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a b s t r a c t 

Deformation transfer is a type of retargeting method that operates directly on the mesh and, by doing 

so, enables reuse of animation without setting up character rigs and a mapping between the source and 

target geometries. Deformation transfer can potentially reduce the costs of animation and give studios a 

competitive edge when keeping up with the latest computer animation technology. Unfortunately, defor- 

mation transfer has limitations and is yet to become standard practice in the industry. This survey starts 

by introducing Sumner and Popovi ́c’s [18] seminal work and highlights key issues for industry settings. 

We then review related work in sections, organized by these key issues. After surveying related work, 

we discuss how their advances open the door to several practical applications of deformation transfer. To 

conclude, we highlight areas of future work. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Studios need to develop tools that enable artists to move be- 

ond manual keyframing and raw motion editing to keep up with 

ncreasing demands for high quality animation. 

Retargeting can provide studios with a competitive edge when 

sed effectively. The goal of research in retargeting is to develop 

echniques that enable us to copy and paste animation between 

haracters. One key advantage of retargeting, for studios, is that 

hey can reuse animation. They might employ an animator to 

raft animation for a template character, but then copy that work 

o an entire crowd of orcs in a fantasy film or onto multiple 

ide-characters in a game. Another important advantage is that 

f the director demands design changes, retargeting techniques 

an help artists to avoid losing work by transferring animation 

etween design iterations. With these advantages, retargeting is an 

mportant tool for both small and large scale productions. When 

sed effectively, it ensures animation work can be completed to a 

igh quality in less time. 

Unfortunately, commercially available solutions for retargeting 

re often not appropriate in many industry settings. As one exam- 

le, the HumanIK tool in Autodesk Maya lets an artist specify pairs 

f joints between the source (animated) and target (unanimated) 
� This article was recommended for publication by David Bommes. 
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haracters. The tool then transfers animation by copying changes 

n rotation between the pairs of joints. This solution is problematic 

n that (1) the pairings need to be entered for every unique pair 

f characters being retargeted, which is a repetitive and laborious 

ask; (2) secondary animations are lost during transfer when they 

annot be expressed by joints; and, perhaps most importantly, 

3) retargeting across vastly different characters is not possible. 

tudios are left to implement their own solutions when these 

roblems are prohibitive. 

In deformation transfer, an approach to retargeting, the goal is 

o transfer animation via the mesh directly. Fig. 1 illustrates this 

oal. While not as simple to understand and implement as alter- 

atives, deformation transfer offers the key advantage that retar- 

eting is possible without the need to first engineer and map be- 

ween character rigs. Thus, deformation transfer offers retargeting 

ithout placing a burden on artist time. 

Unfortunately, there are limitations of seminal deformation 

ransfer [18] that hamper a practical application. These limita- 

ions are addressed by more recent work, and some of their 

roposed solutions have already been used successfully in digital 

roductions. We present this survey as an introduction to defor- 

ation transfer, with focus on exposing its potential for practical 

pplication in industry settings. 

https://doi.org/10.1016/j.cag.2020.10.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.10.004&domain=pdf
mailto:richard.roberts@vuw.ac.nz
https://doi.org/10.1016/j.cag.2020.10.004
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Fig. 1. The goal of deformation transfer is to deform a target mesh (camel), by di- 

rectly manipulating the mesh, such that it best recreates a given source pose (horse, 

with leg forward). 
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.1. Outline 

Section 2 introduces seminal deformation transfer and high- 

ights key issues. We then introduce and discuss the related 

ork in sections based on which of the key issues they solve: 

ection 3 includes work that changes shape and deformations rep- 

esentations to favour performance, to broaden the range of appli- 

able meshes, or to limit artifacts; Section 4 focuses on techniques 

hat use implicit models to enable partial or full automation over 

he process; and Section 5 describes how deformation transfer of 

emantic properties can be realized. As an auxiliary, Section 6 in- 

roduces work that highlights how transfer often conflates defor- 

ations resulting from shape and from pose. Insight from this 

ork can help to explain why some methods produce unnatural 

esults. To conclude, we summarize and discuss a table listing the 

urveyed work ( Section 7 ), discuss potential for industry applica- 

ions ( Section 8 ), and provide ideas for future work ( Section 9 ). 

. Seminal deformation transfer 

In 2004, Sumner and Popovi ́c [18] introduced deformation 

ransfer as the first retargeting solution that operates directly 

etween meshes. Since the source and target rarely match geo- 

etrically, the underlying challenge is to develop a principled way 

o copy a change in the source pose onto the target. They address 

his challenge through a two-step process that first corresponds 

he source and target with one another, and then performs an 

ptimization process to transfer the deformation. Throughout this 

aper, we use the title seminal deformation transfer to denote 

umner and Popovi ́c’s two step approach of building the corre- 

pondence map using an optimization method and performing 

ransfer using a linear system that represents deformation via 

eformation gradients. 

As input, the artist should provide the source and target in their 

eference poses. Conventionally the reference pose has the charac- 

ers in a natural stance, but any pose for the reference is possible 

rovided that the source and target are both posed in the same 

ay. 

The first step of seminal deformation transfer is to build the 

orrespondence map. The correspondence map specifies exactly 

ow the triangles of the source character map onto the target, 

nd vice-versa. To build the map, the artist should first specify 

 set of corresponding points. Given these points, an optimiza- 

ion algorithm finds the best match between the source and 

arget and, once matched, nearest triangles are considered to be 

orresponding pairs. 

Next, the artist provides a new deformed pose for the source. 

he transfer step aims to pose the target to match. In this second 
53 
tep, the change between the source’s triangles in their reference 

nd deformed states are modelled by a set of deformation gradi- 

nts. In practice, a deformation gradient is an affine matrix that 

ncodes how a triangle rotates and scales to transition from its 

hape in the reference pose to that of the deformed pose. To find 

 deformed pose for the target, they propose a least-squares solver 

hat chooses target vertex positions such that the target triangles 

est recreate the deformation gradient of their corresponding 

ource pairs. 

In this section, we introduce the correspondence and transfer 

teps in greater detail ( Sections 2.1 and 2.2 ). We then highlight 

he key issues that we identified in discussion with our industry 

artner ( Section 2.3 ). 

.1. Correspondence step 

While a mapping is obvious when the geometry of both the 

ource and target are similar, it is difficult when this is not the 

ase. For example, consider how it might be difficult to correspond 

he humps on a camel’s back to the spine of a horse (at the level

f triangles). 

Borrowing from template-fitting algorithms, seminal deforma- 

ion transfer proposes a method to build the correspondence map. 

n their method, they employ an optimization scheme that warps 

he source until it matches the target exactly, or vice-versa. In 

ther words, one mesh is deformed to become the other. Once fit- 

ed in this way, pairings can be found by identifying the source 

nd target triangles that are closest to one another. To initialize 

his step, the artist should first select pairs of points that outline 

ow the source and target correspond with one another. Fig. 2 (a) 

rovides an example. Next, an optimization method tweaks ver- 

ices of the target until a pose that places the correspondence pairs 

ogether while also ensuring that the target mesh does become 

alformed. The optimization method achieves this by minimizing 

rror function that measures (1) the distance between correspon- 

ence pairs, (2) the amount of deformation, and (3) local deforma- 

ion smoothness. Results created with our testing implementation 

re shown in Fig. 2 (b). 

The correspondence map can be built once the target has been 

tted. To build the map the algorithm finds all similarly oriented 

ource triangles nearest to a given target and vice-versa, result- 

ng in a many-to-many mapping. Fig. 2 (d)–(f) presents examples of 

apping regions. With the correspondence map in place, the first 

ssue of encoding the geometric relationship between the source 

nd the target has been solved. 

.2. Transfer step 

With the correspondence map in place, the second step is to 

alculate a target pose that best recreates deformations observed 

or a given source pose. The challenge underlying this step is two- 

old: one the one hand, assigning a deformation for each trian- 

le independently results in a target pose where the surface is no 

onger intact (edges of adjacent triangles would become discon- 

ected); and, on the other, we can observe that there will rarely 

e a solution that features optimal deformations for each triangle 

there may be multiple source deformation gradients for each tar- 

et triangle). Thus, we need a method to choose target triangles 

eformations that both keep the target surface intact while also 

aithfully recreating the deformed source pose. 

As a potential solution, Sumner and Popovi ́c suggest using an 

ptimization method. Like the one used for the correspondence 

tep, the method tweaks deformation gradients of the target 

riangles to minimize an objective function under the constraint 

hat adjacent edges stay connected. While simple to implement 
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Fig. 2. In seminal deformation transfer, the correspondence map is calculated from a sparse set of corresponding points selected by the artist (a). From this input, a series 

of four optimization steps are employed to warp the target lion into the source cat (b). Once the target has been transformed into the source, a many-to-many mapping is 

formed between nearest valid triangles. A few examples of corresponding areas are displayed (c)–(e). Transfer becomes computationally tractable given this mapping. 
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his approach, unfortunately, would be too slow for practical 

pplication. 

To enable viable performance, Sumner and Popovi ́c develop an 

lternative method for the transfer step. By solving over vertices, 

nstead of triangles, they avoid the complication that the mesh 

urface can become disconnected. The challenge, in this case, is 

o determine how to best move the vertices to recreate the ap- 

ropriate triangles deformations. Impressively, they designed a lin- 

ar system that models this problem using deformation gradients. 

heir linear system places the deformation gradients of the source 

n one side of the linear system. Then, on the other side, a matrix 

hat negates the target’s reference pose and a vector of unknown 

ertex positions; when these are multiplied together, deformation 

radients for the target triangles are produced. Solving the linear 

ystem finds the deformation gradients that produce a target pose 

est matching the source. While more difficult to understand, this 

inear system enables a much faster and practical solution to de- 

ormation transfer. 

.3. Key issues 

Performance. Even with the linear system in place, it is large and 

annot be solved fast enough for interactive applications [5,7,25] . 

Broadness. The deformation gradients representation is only 

ompatible with triangle meshes [5,9,26] . While triangulation can 

e used to address this issue in part, doing so exasperates per- 

ormance overheads. Transfer between meshes featuring multiple- 

omponents is not possible. 

Artifacts. Deformation transfer results tend to exhibit artifacts 

hat detract from natural appearance [12,16] . 

Artist input. Specifying pairs of points to initialize the corre- 

pondence map can be a laborious task [13,22] . This problem is 

xasperated in that tweaking the selected pairs does not lead to a 

roportionate change in the transfer. This disconnect inhibits artist 

rom intuitively refining results. 

Automation. A lack of automation limits the range of applica- 

ions to those in which an artist is available [6,22] . 

Semantic Transfer. Finally, while geometric properties are 

ransferred, semantic properties are not. 
54 
. Representations to improve deformation transfer 

Motivated to improve upon key issues that we outlined earlier 

n Section 2.3 , many related works have proposed new or extended 

ays to represent and transfer deformation. Some choices of rep- 

esentation help speed up transfer, others enable more robust ap- 

lication, and others limit the occurrence of artifacts. 

Here we survey previous work that focuses on improving per- 

ormance ( Section 3.1 ), enabling broader application ( Section 3.3 ), 

nd limiting the occurrence of artifacts ( Section 3.2 ). We conclude 

ith discussion in Section 3.4 . 

.1. Improving performance using cages 

Previous work has reduced the computational overhead of 

ransfer, primarily by using a cage that offers a lower-dimensional 

nterpretation of the mesh. 

Ben-Chen et al. [5] present the first method to use a cage for 

ransfer. They first provide an algorithm to build the cage, which 

tarts from a dense sampling of the original mesh’s surface and 

hen interactively removes and repositions vertices. The resulting 

age ensures sparsity and a tight-fitting. The relationship between 

he cage and the underlying mesh is encoded using the variational 

armonic functions of [24] . The functions form a basis that, when 

eighted appropriately, can modify the pose. A least-squares so- 

ution is used for transfer, in which an algorithm calculates off- 

ets for target cage vertices such that the deformed target best 

atches the given source (where closeness is measured in terms 

f artist-specified points, which operate in place of the correspon- 

ence map). 

In similar previous work, Chen et al. [7] also propose to enclose 

he source and target in a cage and perform transfer by optimizing 

ositional changes in a sparse set of artist-defined landmarks. Mak- 

ng their work distinct from that of Chen et al., they use Green co- 

rdinate interpolation to propagate changes of the target cage back 

o the target mesh. They argue that the Green’s coordinate interpo- 

ation, which is biased to preserve angles between edges over their 

engths, improves transfer in detailed areas. 

Most recently, Yifan et al. [23] proposed a novel technique 

hat employs a deep learning model – called CageNet – to learn 
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2 Seminal deformation transfer supports only triangular meshes. Other types of 
age deformation. Where deformation transfer aims to recreate 

 change between poses, the focus of their work is to deform 

 given source model to take on the shape of a target model, 

hile preserving local geometric details. In their approach, they 

rst encode both meshes into a latent space and then apply two 

ifferent decoders: one decoder creates a cage for the source 

esh, while the other creates an offset that should be applied to 

hat cage’s vertices to best reproduce the target shape. 

While not the primary focus of their work, Yifan et al. demon- 

trate how their approach can be modified to perform deformation 

ransfer of human models. They train a model of cage deformation 

ver a database of exemplary motions, in which they learn to 

t the cage to best reproduce poses from that database. Next, 

hey use this trained model to transfer deformation: given a new 

uman mesh with a sparse selection of artist-selected landmarks 

nd a desired pose from the original database, they first align the 

ource to the target reference pose, then employ an optimization 

tep to generate a cage for this source model, and finally query 

he trained model to obtain an offset for the generated cage that 

roduces the deformed target pose. 

Cages are a powerful solution that exploit sparse representation 

o enable fast performance. With the enhanced performance, these 

echniques make deformation transfer suitable for interactive use. 

his is a critical advantage for any applications where artists need 

o explore and potentially refine transfer results interactively. Un- 

ortunately, the sparser representation has the drawback that fine- 

cale deformations can be lost. In applications requiring higher fi- 

elity, such as transfer of wrinkling details in faces, typical cage 

epresentations are inappropriate. 

.2. Limiting artifacts for better transfer 

Other previous work has focused on the issue that the result- 

ng target pose often features visually unnatural artifacts. Some of 

he more common artifacts of seminal deformation transfer are 

rumpling and self-intersection. 

Zhao et al. [25] introduce the dual-mesh representation for de- 

ormation transfer. 1 Distinct from seminal deformation transfer, 

he dual mesh representation encodes and optimizes deformation 

n terms of surface normals, which helps to eliminate artifacts that 

rise in areas with fewer vertices or with complex shapes. 

Saito [16] extend the linear system used in seminal deformation 

ransfer with new constraints over intersection and smoothness. 

or intersections, they add virtual triangles that encapsulate the 

oles in the model, such as eye holes and the mouth. The virtual 

riangles are appended to the linear system used for solving trans- 

er, which helps to preserve the shape of the holes as well as the 

esh and, consequently, intersections across these holes are un- 

ikely to occur. Second, they add a Laplacian-based regularization 

erm that leads to smoother deformations. With these two terms 

dded to the linear system, transfer results exhibit fewer artifacts. 

In another work Shabayek et al. [10] observe that Euclidean 

paces can be ineffective for representing deformation. They 

dapt the Lie Bodies representation [11] to decompose triangle 

eformations into a group of transformations expressed using a 

ie Algebra. A manifold is formed by combining the elements of 

he algebra for each of triangle deformations, such that each pose 

orresponds to a point on that manifold. Using this manifold, in 

hich degenerate cases of deformation are avoided by design, 

hey present impressive results with fewer artifacts. Furthermore, 

ther advantages of this manifold are that interpolation and even 

omposition of deformations become possible, which could be 
1 Au et al. [2] developed the dual-mesh representation for editing meshes using 

aplacian operations. These types of operations are common in applications that 

lend two or more images or meshes to appear seamless. 

m

e

c

t

c

55 
 significant advantage for some applications, such as simulated 

nimation involving many incremental transfers. Other advanced 

perations like measuring variance between poses are possible. 

Resolving transfer artifacts would become a common task if de- 

ormation transfer were to be applied more broadly in industry. In 

ome cases, an artist would find that fixing a few minor artifacts 

y adjusting vertex positions would be relatively trivial. However, 

n other cases, the artifacts may be too numerous or occur in com- 

lex areas and demand more intensive work to resolve. Further- 

ore, in other applications, an artist may not be available (perhaps 

ue to limited budget or real-time application), in which case arti- 

acts will detract from quality. The work introduced here helps to 

ombat these issues: Zhao et al.’s dual-mesh can help to limit ar- 

ifacts without requiring additional artist work, and Saito’s virtual 

riangles help to prevent intersections (particularly important for 

acial animation). In broader applications, where it may be difficult 

o create virtual triangles, artifact-free transfer remains an open 

roblem. In these cases, we can take inspiration from Shabayek 

t al.’s Lie Bodies representation that could provide more natural 

ooking results. 

Despite their advantages, these techniques retain higher com- 

utational costs and, unlike the cage-based approaches, are not 

uitable when interactive performance is required. 

.3. Broader mesh types 

Another focus of previous work has been to enable transfer for 

ore generic mesh types. 2 

Domadiya et al. [9] introduce a vector graph representation, 

hich enables deformation transfer to be applied to meshes with 

ny type of polygons. The vector graph extends the mesh by plac- 

ng a new vertex at the centre of each face and then adding new 

dges that span these new vertices. This process effectively tri- 

ngulates the mesh and, while this would generally slow down 

he solution, they introduce an optimization that scans through 

he correspondence map to selects a subset of elements (approx- 

mately half) to use when solving for transfer. This optimization 

akes their vector graph amenable for transfer with similar per- 

ormance to seminal deformation transfer. 

Zhou et al. [26] propose a solution to enable transfer between 

ulti-component meshes. Their extension finds spatial relation- 

hips between the multiple components of a character and uses 

hese to define a new error term that is minimized when those 

patial relations are preserved by transfer. This new error term 

s non-linear and so they must use the optimization method for 

ransfer (described in Section 2.2 ; however, they demonstrate that 

ach step in the optimization scheme is linear, which means that 

erformance is still amenable for some applications. Despite this 

rawback, their solution enables impressive transfer between char- 

cters composed of multiple parts and opens the door to advanced 

ransfer applications (perhaps deforming a cloud of particles based 

n a template animation, or between a template animation and a 

obot composed of many small parts). 

Enabling deformation transfer for a broader range of mesh 

ypes, while retaining the ability to be computationally feasible is 

 difficult problem. In one sense, the previous work on envelop- 

ng meshes using a cage-representation could already solve this 

roblem; however, a key drawback of these techniques is that they 

ose fine-scale details. The methods presented here operate on the 
eshes are also used in computer graphics, such as meshes containing quadrilat- 

ral polygons and even polygons with higher numbers of vertices. Some meshes 

ombine different types of polygons, which are typically called hybrid meshes . Fur- 

hermore, some meshes are composed of multiple separate parts, called multi- 

omponent meshes . 
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ource and target meshes directly, enabling transfer for a broader 

ange of meshes without the drawback of detail loss. 

Despite the advantages of these techniques, they also retain 

igher computational costs and, again, are not suitable when 

nteractive performance is required. 

.4. Discussion 

In this section, we surveyed related work that tackles key issues 

f performance, artifacts, and generality. 

To improve performance, a sparse representation – typically a 

age that envelopes the mesh – have been proposed [5,7,8,14,25] . 

he cage offers significant gains in performance as the transfer can 

perate over a much sparser representation. However, this gain in 

erformance tends to come with the cost of detail loss. 

To reduce artifacts, the related work has proposed to extend 

ransfer with a representation of the negative space and with a 

reference for deformation smoothness. Virtualization of negative 

pace can be achieved by adding virtual triangles and deforma- 

ion smoothness can be encoded either implicitly through an al- 

ernative deformation representation (like the dual-mesh in [25] ) 

r explicitly through a regularization term (like the Laplacian in 

16] ). Finally, most recently, Shabayek et al. [10] have introduced a 

on-Euclidean deformation representation that avoids degenerate 

ransformations by design. 

Finally, extensions have been proposed to generalize the range 

f meshes to which transfer can be applied. Transfer can be per- 

ormed for meshes containing any types of polygons with the 

ector-graph [9] , and for multi-component meshes when spatial 

elationships are found and added as a new term to the transfer 

ethod [26] . 

While an all-encompassing solution for fast, artifact-free, and 

eneralized deformation transfer is yet to be proposed, the ad- 

antages provided by the surveyed work can already be used 

o enable practical applications of deformation transfer in many 

ettings. 

. Toward automatic correspondence 

Seminal deformation transfer requires the artist to manually 

pecify pairs of points. Allowing manual input from the artist is a 

esirable feature, especially in production scenarios where an artist 

an tune the selection of correspondence pairs to affect transfer 

esults (at least through trial and error). However, there are other 

ituations where automation is helpful. 

Motivated to provide partial or full automation, related work 

as proposed novel methods to reduce artist involvement when 

nitializing the correspondence map. This may be done by (1) 

eveloping a method to help find correspondence points or by (2) 

sing an implicit correspondence map, which omits the need for 

he artist to specify correspondence pairs. With either approach, 

eformation transfer can be applied with less artist involvement. 

he task of shape correspondence or matching, which can be 

sed for finding an explicit or implicit correspondence map, has 

pplications in several areas other than deformation transfer such 

s 3D scan alignment, reconstruction, and classification. Outside 

f deformation transfer, other work has developed approaches 

o match data of different representations (points, surfaces, 

keletons) and dimensions (2D, 3D, temporal or non-temporal), 

roviding different type of correspondences (dense, sparse, full, 

artial, probabilistic, one-to-many, many-to-many, affine or rigid 

ransformations), and taking different approaches to the problem 

f correspondence mapping. The survey from van Kaick et al. 

20] provides an in-depth review of different approaches and 

iscusses their use in alternative applications. 
56 
While the broader field of shape correspondence and matching 

ould be applied to deformation transfer, here we introduce only 

he correspondence methods proposed in work on deformation 

ransfer. 

.1. Finding correspondence pairs 

Bian et al. [6] present a fully automatic approach that finds cor- 

espondence pairs for transfer between faces. In their approach, 

hey search a mesh projected onto a 2D image to find landmarks 

round features such as the eyes. They find one landmark in each 

ye corner, two landmarks in each of the upper lids, and two 

n each of the lower lids. Once found for both the source and 

he target, they use the inverse projection to derive which ver- 

ices of the mesh match the identified landmarks. Through doing 

his landmark search for both meshes, they can automatically find 

oints correspondence pairs. While this approach is successful in 

utomating over faces, their search mechanism cannot be extended 

rivially to other applications. Nevertheless, this principle of us- 

ng domain-specific knowledge to find similar points between the 

ource and target is novel in that it can automatically suggest can- 

idates to the artist (thus reducing overheads) or, when the found 

orrespondence pairs are already sufficient, be used to automate 

he algorithm altogether. 

Based on the observation that the task of choosing which points 

o use for correspondence is complex, yet the task of finding a 

oint corresponding to a given point is more simple, Yang et al. 

22] explore how to automatically choose ideal correspondence 

oints for the source (leaving the task of pairing them to the 

rtist). To choose the source points, they employ harmonic analysis 

24] , segmentation, and clustering. Next, they identify a point rep- 

esenting each cluster and provide this set as candidates. The artist 

hen completes the easier task of finding their pairs on the tar- 

et model. Since the pairing task is easier, significantly less artist 

ime is required to initialize the correspondence map. Interestingly, 

hile the resulting correspondence pairs could be used as input 

o the seminal method, Yang et al. propose an alternative transfer 

ethod where deformation is copied between the source to target 

airs directly (with an automatic skinning step used to deform the 

arget mesh to best fit the updated handles). This direct scheme is 

ignificantly faster although, much like the cage representation, is 

rone to detail loss. 

.2. Implicit correspondence map 

As another approach, deep learning methods excel in terms of 

nabling implicit mapping of correspondence and a powerful solu- 

ion for full automation. 

Gao et al. [13] combine a variational autoencoder (VAE) with 

 cycle-consistent generative adversarial network (CycleGAN) to 

odel the correspondence mapping and transfer processes. In 

heir technique, they set up a pair of variational autoencoders 

VAEs), one for modelling the source character and the other for 

odelling the target character. Each VAE is similar in structure to 

eshVAE [19] , a VAE trained with a rotation-invariant metric that 

ncodes a given pose to a vector in a compact latent space. Differ- 

nt from MeshVAE, which uses fully connected layers, Gao et al. 

se convolutional layers that improve generalizability. Further- 

ore, they use an as-consistent-as-possible (ACAP) deformation 

epresentation [12] that defines features in terms of vertices. The 

CAP deformation representation is beneficial in that convolutional 

perations are easier to define and larger deformations are better 

andled. 

Using the latent vectors from the VAEs as input, they train a 

ycleGAN to model a pair of generators: one generator maps a 

ector from the source latent to another in the target latent space, 
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hile the other generator performs the reverse mapping. The 

utputs from each generator are then decoded (using the VAEs) 

o obtain the estimated pose. To train the CycleGAN model, poses 

rom a database of varied human motion are organized into source 

nd target pairs and these poses are then encoded into their 

atent space vectors through the VAEs. They train the CycleGAN 

o improve the generators until they can faithfully reproduce the 

round-truth poses. Once trained, they generators are effective for 

ransfer between unseen human source and target characters. 

Most recently, borrowing a model architecture developed for 

tyle-transfer in images, Wang et al. [21] introduced the first 

olution for deformation transfer without the need for a source 

eference pose. In their solution, they use an encoder-decoder 

eural network structure to model the correspondence and trans- 

er process. Given a deformed source pose, they encode it to a 

atent space using a pose feature extractor that observes local- 

zed details of the mesh. Their decoder features several layers, 

nspired by style-transfer methods, and estimates a target pose 

hat features similar local details to those observed for the source. 

 unique advantage of this solution is that it can perform transfer 

ithout ever observing the deformation directly (there is no 

eference source pose); however, it may be prone to creating 

rtifacts when the shape of source and target characters differ 

ignificantly. 

Overall, deep learning solutions offer a way to leverage all the 

nformation within meshes to enable powerful and automatic de- 

ormation transfer. The use of latent spaces means that no explicit 

efinition of correspondence between is required and, therefore, a 

istinctive advantage of these techniques is that the artist need not 

anually define correspondence pairs between the characters. Fur- 

hermore, no extra computation time is required for calculating the 

ense correspondence map. One disadvantage, however, is that a 

atabase is required for training. This need has currently limited 

he application of these techniques to characters where those data 

re available, such as human scans. 

.3. Discussion 

The approaches surveyed in this section enable many practical 

pplications of deformation transfer. 

When we can make assumptions about the domain of the prob- 

em, we can take inspiration from Bian et al.’s work [6] to develop 

euristics to automatically find correspondence pairs. This ap- 

roach is most easily applicable to transfer between faces but may 

lso prove useful to other applications such as transfer between 

imilar fantasy characters. Employing heuristics based on domain- 

pecific knowledge has the advantage of being fast to compute 

ut also the drawbacks that those heuristics can be difficult to 

iscover and that, once developed, are limited to their specific 

pplications. 

Deep-learning approaches are potentially the most powerful. 

hey avoid the need to specify correspondence by encoding it indi- 

ectly through latent space. While expensive to train, the resulting 

odels enable transfer that is both fast and automatic. 

Unfortunately, extensive data is required for training, which 

ill not be readily available outside of human characters (and 

erhaps domestic animals where motion capture may be used). 

urthermore, without any way for the artist to guide the de- 

ormation result, deep learning solutions are only applicable to 

ituations where the result is already suitable for the intended 

pplication, which limits their practical use in productions of films 

nd games where significant artistic refinement will be required. 

iven the restrictions imposed by learning methods, we might 

onsider that Yang et al.’s [22] method of automatically choosing 

andidates to reduce artist time required for initialization is the 

ost feasible approach to those production situations. 
57 
. Semantic transfer 

Seminal deformation transfer solves transfer by minimizing de- 

ormation gradients that encode geometric differences between 

eference and deformed poses. However, there are many cases 

here geometrically corresponding a given source and target is not 

ossible: how should we correspond a flamingo with two legs to a 

orse with four? 

Baran et al. [4] present the first approach for transferring defor- 

ation semantically, rather than geometrically. In semantic trans- 

er, the idea is to pose the target to recreate the meaning of the 

ource pose, more so than changes observed in geometry. The key 

dea behind semantic transfer is to set up two spaces, one for the 

ource and one for the target, that semantically match one an- 

ther. The spaces enable pairwise interpolation of exemplary poses 

o produce semantically matching results, and thus transfer can be 

erformed by first projecting into the source space and then inter- 

olating in the target space. 

In summary of Baran et al.’s algorithm: two sets of matching 

oses for the source and target are provided as input. For example, 

he first pair of poses might feature the source and target stand- 

ng, the second pair might feature the top of a jump, the pair poses 

ight feature a crouch, and so on. Whatever each pair of poses de- 

ict, they must be a semantic match. Given the sets of poses, they 

onvert them into coordinates that span a low-dimensional shape 

pace. Since the coordinates of the source and target space share 

emantic meaning, the spaces implicitly correspond to each other. 

ue to their correspondence, transfer can be performed by projec- 

ion and interpolation. First, their algorithm projects a given source 

ose into the source space to determine its coordinate. Through 

he projection, they obtain a set of weights that describe how 

o combine the basis coordinates (the coordinates of the original 

ource poses) to best recreate the given deformed pose. Second, 

hey interpolate the target space using these weights to obtain a 

arget coordinate that corresponds to the identified source coordi- 

ate. Finally, to obtain a target pose, they employ a least-squares 

olver to choose vertex positions that, when projected, is nearest 

o the interpolated coordinate. 

Semantic deformation transfer is ideal for applications that de- 

and transfer between characters of vastly different shapes. As 

ne example, consider the task of animating a horse from a hu- 

an mocap. The artist might choose to scan through the mocap 

nd identify a few representative poses, from which they pose the 

orse manually. After creating a modest library of poses, they can 

pply semantic deformation transfer to transfer the rest of the mo- 

ion automatically. 

Like the deep learning methods described in Section 4.2 , se- 

antic deformation transfer also encodes the correspondence map 

mplicitly and therefore removes the need for the artist time to 

anually define correspondence pairs. 

While Baran et al. propose the only solution for semantic trans- 

er, one drawback is that two sets of poses that sufficiently define 

he deformation space must be provided. While extensive data is 

ot required, it may be infeasible to produce the poses sets in pro- 

uction settings [9,22] . For example, in a production setting using 

antasy characters, it may be too expensive to have the artist make 

everal sculpted poses. 

. Decoupling shape and pose deformations 

Another idea that must be considered, tangential to the con- 

ept of semantic versus geometric deformation transfer, is whether 

eformation results from a change in pose or is unique to the 

hape of the source or target. 

Pose-based deformation is any deformation that results directly 

rom a change in pose. It is deformation that occurs independently 
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Fig. 3. The example above highlights the difference between deformations relating to pose and shape. The example depicts a close view of the right-arm of a muscly 

character. There are three key poses: the arm is relaxed at their side (a), the arm strikes the pose but remains relaxed (b), and the arm now flexed (c). Deformation lies 

between the poses: in (a) and (b) deformation relates to pose (d), and in (b) and (c) deformation is unique to the shape of this muscly character (e). Changing pose directly 

from (a) to (c) would involve both the pose (d) and shape (e) deformations occurring simultaneously. Consider how a weak character would have smaller muscles and 

therefore not feature the same shape deformation, in this case seminal deformation transfer will correctly apply pose-based deformations but may also erroneously transfer 

shape-based deformations. By considering the impact of conflating pose and shape deformations we can see how artifacts occur in seminal deformation transfer – imagine 

how shape deformations vary between skinny and overweight characters, short and tall characters, and young and old characters. Model provided by Turbo Squid , under 

Royalty Free License . 
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3 Note that, in practice, adding the extra vertices to form tetrahedrons would be 

disadvantageous since doing so would increase the size of the linear system for 

transfer. As summarized in [17] , we can derive deformation gradients that do not 

require the extra vertex by examining the deformation of edge matrices (hence the 
rom the shape of the character. For example, an arm will bend 

s the elbow joint closes. In contrast, shape-based deformation is 

ny deformation unique to the shape of the object. For example, 

he bulging unique to a muscly character. Fig. 3 illustrates these 

ifferences. 

Anguelov et al. [1] developed a method that learns two para- 

etric models that separate shape and pose deformation. Given 

cans of different poses, they first deform a template mesh to 

atch and, from these deformed poses, compile a pose model. The 

arameters of this model adjust only the pose of this template 

haracter. Next, they construct another model, but this time de- 

elop parameters that vary its shape to deform the template into a 

ariety of scans that depict different humans. With the two mod- 

ls in place, Anguelov et al. demonstrate that natural pose-based 

eformations can be created for a range of characters despite their 

hape variation. 

The separation between pose-based and shape-based deforma- 

ions, as highlighted in Anguelov et al.’s work, reveals a key prob- 

em for deformation transfer. Transfer, when solved geometrically, 

onflates both the pose and the shape aspects of deformation. This 

onflation is one reason why artifacts occur in the target pose re- 

ulting from transfer. If we can decouple pose-based and shape- 

ased deformations during transfer, we may be able to avoid much 

f these artifacts. 

For now, decoupling deformation in its pose and shape com- 

onents remains an open problem for deformation transfer. Balan 

t al. [3] expose one possible direction in related work: they 

resent a technique that tweaks Anguelov et al.’s model param- 

ters to pose a character that matches both the shape and pose 

bserved in images of people. Their results demonstrate that the 

tted model accurately depicts the pose and the shape of the hu- 

an. One could consider an approach that performs transfer over 

orresponding pose-based and shape-based parameters, although 

his is yet to be explored. 

Interestingly, approaches that model correspondence implicitly 

end to avoid the problem of inadvertently transferring shape- 

ased deformation. In semantic transfer ( Section 2 ), conflating 

ose and shape deformations is avoided as a separate shape space 

s used for the source and the target models (their transfer cannot 

nadvertently copy over shape-based deformations because of this 

eparation). The recent work on deep-learning ( Section 4.2 ) also 

voids the problem implicitly, as the models are trained against 

ets of poses unique to each character (thus, again, separation 

voids the problem). 
n

58 
. Summary of related work 

Table 1 lists the surveyed work that introduces novel methods 

or deformation transfer. In this section, we summarize the work 

ith a focus on their choices of shape and deformation representa- 

ion, denoted by columns 2 and 3. We also comment on how these 

epresentations underpin the type of correspondence mapping and 

he method of transfer (columns 4 and 5), along with their key 

dvantages and limitations (columns 6 and 7). 

Successful deformation transfer is heavily reliant on an effective 

epresentation of both the shape (mesh) and the deformation be- 

ng transferred. Recalling Section 2 , seminal deformation transfer 

roposes that we imagine forming a tetrahedron over each trian- 

le. The tetrahedron connects each of the vertices along with an 

dditional vertex that sits at the end of the face normal. Since this 

amily of tetrahedrons, together, express the shape of the mesh, we 

efer to them as the shape representation . Using the shape repre- 

entation, we can easily define a deformation for a given pose: we 

alculate an affine matrix that transforms each tetrahedron from 

ts shape in the reference pose to that of the given pose. By per- 

orming this calculation for each tetrahedron, 3 we can fully express 

he deformation of the mesh; thus, we refer to the resulting set of 

ffine matrices as the deformation representation . 

The representations used in seminal deformation transfer are 

deal in that they fully capture the deformation of the mesh. Due 

o this advantage, it remains a common choice when surface de- 

ormations are the focus of transfer (used in [6,16–18,25,26] ). How- 

ver, this representation is granular and, consequently, many defor- 

ations must be transferred such that a large linear system is re- 

uired and renders the algorithm too slow for interactive use. Fur- 

hermore, the optimal deformations per triangle can conflict with 

ne another and so several artifacts can arise as at least some sub- 

ptimal deformations must be present in the results. Finally, the 

epresentation is only suited to triangle meshes, which does not 

upport broad application. 

Some works extend the representations of seminal deformation 

ransfer with additional properties. Recalling Section 3.2 , Zhao 

t al. [25] use a dual-mesh shape representation that limits 
otation of edges in column 2 of Table 1 ). 

https://www.turbosquid.com/FullPreview/Index.cfm/ID/1348026
https://blog.turbosquid.com/royalty-free-license/
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Table 1 

A summary of key work surveyed in this report. The first column specifies the citation and title, columns 2 and 3 denote the representations used to model shape and 

deformation; columns 4 notes the type of correspondence mapping and 5 the method of transfer; and columns 6 and 7 summarize advantages and limitations. 

Reference Shape Rep. Deformation Rep. Correspondence Transfer Method Key Advantages Key Limitations 

[18] Sumner and Popovi ́c triangles edges, affine dense least squares triangles only, 

artifacts, speed 

[5] Ben-Chen et al. cage landmarks sparse least squares faster, broader application fine-scale loss 

[7] Chen et al. cage landmarks sparse optimization faster, broader application fine-scale loss 

[23] Yifan et al. cage landmarks sparse deformation network learn cage deformations fine-scale loss, need 

data 

[26] Zhou et al. triangles + spatial edges, affine dense optimization broader application speed 

[9] Domadiya et al. vector graph vertices, frames dense least squares broader application speed 

[16] Saito triangles + virtual edges, affine dense least squares limit artifacts, enable 

constraints 

triangles only, speed 

[25] Zhao et al. dual mesh vertices, affine dense optimization limit artifacts triangles only, speed 

[10] Shabayek et al. triangles triangles, groups dense least squares limit artifacts triangles only, speed 

[6] Bian et al. triangles edges, affine dense least squares automatic correspondence triangles only, speed, 

artifacts 

[22] Yang et al. clusters landmarks sparse copy directly semi-automatic 

correspondence 

fine-scale-loss 

[13] Gao et al. latent ACAP [12] implicit mapping functions automatic correspondence need data 

[21] Wang et al. latent pose feature implicit decoder transfer without source 

identity 

need data 

[4] Baran et al. shape space coordinates implicit project + interpolate faster, semantic transfer 

possible 

triangles only, 

artifacts 
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rtifacts when paired with a Laplacian error term, at the cost of 

equiring a more expensive optimization process for transfer. And, 

ecalling Section 3.3 , Zhou et al.’s [26] method appends spatial 

elations that enable stable transfer for multi-component meshes. 

hese appended elements successfully enable broader transfer but 

ave the drawback that a larger linear system must be solved 

although, in practice, this overhead should be relatively minimal). 

It is also possible to use alternative surface-based represen- 

ations. For example, Domadiya et al. [9] employ a vector graph 

s their shape representation, that effectively converts a hybrid 

esh into a triangular mesh. For deformation, they create local 

oordinate frames describing how each vertex of the graph moves 

etween the reference and deformed poses. As well as enabling 

roader application, their formulation has another advantage in 

hat each deformation is expressed in a local coordinate system 

hat more easily enables post-processing (they apply a Poisson 

nterpolation post-process to improve temporal properties of trans- 

erred sequences). As another example, Shabayek et al. [10] employ 

 deformation representation that encodes each triangle defor- 

ation as a group containing a rotation, in-place deformation, 

nd anisotropic scaling. By projecting these transformation groups 

nto a special type of manifold that features a Riemannian metric, 

hey can produce results that appear more natural than those 

f seminal deformation transfer. Furthermore, their deformation 

epresentation enables new operations such as interpolation and 

omposition. While powerful, this approach is currently limited to 

riangle meshes. 

Other works combat computational complexity, primarily by 

sing a cage as the shape representation, paired with constraints 

t landmarks for the deformation representation [5,7,22] . Using a 

age for the shape representation has the key advantage that the 

inear system to be solved is smaller and thus can be executed fast 

nough for interactive use. While fast and broadly applicable, the 

parsity of the cage means that finer-scale deformations are lost. 

Another powerful approach is to represent shape and deforma- 

ion in a way that enables implicit correspondence of the source 

nd target. Recalling Sections 4.2 and 5 , several methods have 

een proposed for implicitly representing the correspondence 

etween the source and target. A pair of shape spaces are used 

n semantic transfer [4] , and a latent space in the deep learning 

ethods [13,21] . The implicit representations reduce the burden 

n artist time (since the artist no longer needs to manually 
a

59 
dentify corresponding points to initialize the algorithm) and 

an potentially offer automation. Furthermore, they are the only 

echniques that have the potential to transfer between characters 

f significantly differing shapes. While powerful, these methods 

equire databases to train and this limits their application to data 

hat is readily available. 

In summary, the choice of shape and deformation representa- 

ion is perhaps the most critical consideration when choosing one 

f the above techniques, and this choice often prescribes what 

he type of correspondence mapping and transfer method are to 

e used. The deformation gradients, of seminal deformation trans- 

er, are still reasonable as the default choice; they excel in cap- 

uring the full surface deformation and transfer can be applied by 

airing a dense correspondence map with a least-squares solver. 

hen speed is an important factor, the cage representation en- 

bles a smaller linear system that can be used for interactive pro- 

essing (an artist can see the results in real-time). Alternatively, if 

reserving fine-scale details while also reducing artifacts is a fo- 

us, then one should consider techniques that add additional fac- 

ors to the shape representation (such as the dual-mesh represen- 

ation, the vector graph, or the virtual triangles). When automa- 

ion is favourable, then one should consider the latent representa- 

ions that are used by the latest deep-learning techniques to en- 

ble implicit correspondence. Finally, for transfer between vastly 

ifferent characters, one can look to the work on semantic defor- 

ation transfer. 

. Industry application 

Through the discussion of Section 7 , we can conclude that de- 

ormation transfer is already developed to a point where it can be 

pplied as a practical solution in industry settings. 

With a correspondence map set up in advance, cage-based tech- 

iques can support transfer in interactive media such as video- 

ames or interactive VR/AR experiences. Surface-based methods 

un fast enough for artists to supervise results. They offer trans- 

er with a higher level of detail, being best suited to the purpose 

f reusing animation between similar characters (such as different 

esign iterations of a lead character). These can be used when cre- 

ting animation for side-characters or crowds. When transfer is re- 

uired between characters that vary dramatically in shape – such 

s transfer between a human source and a non-human monster or 
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nother fantasy character – semantic transfer can be applied. And, 

nce trained, deep learning methods push the boundary forward 

or applications requiring automation. 

As one specific example, Saito’s [16] deformation transfer has 

een used successfully in the production of a full feature length 

lm. In this case, seminal deformation transfer was extended with 

aito’s virtual triangles and smoothness constraints and was used 

o create facial blendshapes for custom characters by transferring 

oses from a predefined template model. While blendshapes are a 

tandard in industry, the cost of creating additional shapes tailored 

o each unique character is considerable, and for productions with 

ower budgets this cost is infeasible. To address this issue, the stu- 

io employed deformation transfer to create blendshapes almost 

utomatically. And, with Saito’s extensions reducing the occurrence 

f artifacts, there was little need to fix issues such as invalid creas- 

ng near the corners of the lips and eyes. 

Ultimately, by considering the demands of the given applica- 

ion and carefully choosing an appropriate variation, we believe 

hat deformation transfer can provide studios with a competi- 

ive edge to keep up with the growing demands of animation 

roduction. 

. Conclusion 

Seminal deformation transfer enables artists to copy and paste 

nimation between two characters without first needing to create 

nd map between customized controls for each of those characters. 

he advantages provided by more recent work address the key is- 

ues of efficiency, robustness, and automation. 

To conclude this report, we suggest areas of future work that 

ay help further the practical application of deformation transfer. 

Cages without detail loss. Cage-based approaches [5,7,23] are 

ritical for realizing interactive performance, but risk losing fine- 

cale deformations. Future work should consider algorithms to 

dapt cages to best preserve fine-scale details. 

Resolve intersection artifacts. Saito [16] highlights that transfer 

esults often feature intersections, which can be resolved in part by 

dding virtual triangles that represent the space between different 

arts of the mesh. Future work considering broader solutions to 

esolving intersections would be valuable. 

Artist guidance. It is critical that artists be able to refine transfer 

esults. A clear and intuitive mechanism for artists to guide the 

ransfer is yet to be proposed. 

Temporal editing. Domadiya et al. [9] notes that temporal arti- 

acts need to be addressed in transfer results. Future work might 

onsider deformation representations that model both spatial and 

emporal properties to ensure that transfer faithfully recreates both 

he shape and the timing of the source. 

Hybrid techniques. Deep learning techniques [13,21,23] enable 

ast, robust, and automatic deformation transfer once trained ef- 

ectively, but their application is generally limited due to the lack 

f input data for non-human and fantasy characters. Important fu- 

ure work would be to consider a hybrid approach, where tradi- 

ional deformation transfer techniques are used to create missing 

ata that can then be used to train deep learning techniques. 

Shape matching for better correspondence. The range of corre- 

pondence methods explored for deformation transfer is relatively 

mall in comparison to the variety surveyed in [20] . Valuable fu- 

ure work would be to apply more advanced shape matching solu- 

ions for correspondence mapping in deformation transfer. Recent 

ork by Roufosse et al. [15] provides an exciting starting point. 

Decoupling shape and pose deformations. Recalling Section 6 , fu- 

ure work should develop new representations for shape and de- 

ormation that can isolate deformations as being unique to either 

ose or shape. Doing so would further enable artifact-free transfer. 
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