
1

Metameric Inpainting for Image Warping
Rafael Kuffner dos Anjos, David R. Walton, Kaan Akşit, Sebastian Friston,

David Swapp, Anthony Steed and Tobias Ritschel

Abstract—Image-warping, a per-pixel deformation of one image into another, is an essential component in immersive visual experiences
such as virtual reality or augmented reality. The primary issue with image warping is disocclusions, where occluded (and hence unknown)
parts of the input image would be required to compose the output image. We introduce a new image warping method, Metameric image
inpainting - an approach for hole-filling in real-time with foundations in human visual perception. Our method estimates image feature
statistics of disoccluded regions from their neighbours. These statistics are inpainted and used to synthesise visuals in real-time that are
less noticeable to study participants, particularly in peripheral vision. Our method offers speed improvements over the standard structured
image inpainting methods while improving realism over colour-based inpainting such as push-pull. Hence, our work paves the way
towards future applications such as depth image-based rendering, 6-DoF 360 rendering, and remote render-streaming.

Index Terms—Inpainting, warping, perception, real-time rendering

F

1 INTRODUCTION

1 T HE quality requirements for computer-generated content have2

been increasing for many years, with no sign of slowing3

down. Meanwhile, immersive, mobile, and remote applications have4

gained popularity. These applications have either higher rendering5

requirements (e.g., high, constant frame-rate or stereo), run on less6

powerful devices, or have limited access to data.7

Image warping is an operation that allows re-rendering frames8

from alternative viewpoints using present per-pixel motion or9

view information. Alternative viewpoints can be offset in space or10

time. Image warping plays a crucial role in enabling these novel11

applications through latency compensation, stereo view synthesis12

or temporal upsampling [28]. A problem that will inevitably arise13

during warping is the disocclusion of regions for which there is no14

content to warp. Filling these “holes” with perceptually inaccurate15

content reduces the perceived realism of the rendered scenes. Thus,16

Inpainting algorithms fill a region of unknown pixels with plausible17

content [3].18

Our definition of plausible depends on the application, context,19

and viewing conditions. Ideally, we would be able to predict20

precisely the missing information (e.g., predicting a mouth or eye21

on a face with a missing piece). In practice though, it is sufficient22

that the approximation is adequate for the context. When inpainting23

video, one might be able to find the accurate information to inpaint24

from future or past frames [33], but this is not guaranteed, and only25

viable if the video completion operation is performed offline due26

to the complex nature of this task. Recently, this problem has been27

approached using neural networks [44, 51, 52], which are able to28

take surroundings into account when predicting the missing content.29

These neural network approaches have been used extensively in30

image restoration and completion applications. However, they are31

typically complex to control, many are not temporally coherent,32

and their execution times prohibit real-time applications.33

• Rafael Kuffner dos Anjos is with the University of Leeds.
r.kuffnerdosanjos@leeds.ac.uk

• All other authors are with University College London. https://vr.cs.ucl.ac.
uk/research/pipelines/

Manuscript received November 10, 2021

In this paper we propose metameric image inpainting. In 34

colourimetry, two colours are considered metamers if they have 35

different spectral power distributions, but are perceived as the same. 36

Unlike metamers in colourimetry, Freeman and Simoncelli [11] 37

explore a different type of metamer: images that are considerably 38

different in content but are perceived as the same. An excellent 39

example of such metamers as explored by Freeman and Simoncelli 40

[11] are ventral metamers (see also [16, 40, 41, 48]), which are 41

pairs of images that are perceived identically by peripheral vision. 42

To briefly summarise, different patches may be perceived as the 43

same due to the similarity in image statistics, which are vital 44

components of the visual system. Therefore, it does not matter 45

what exactly is being inpainted into holes, it should just agree in 46

the statistics with what would be there. Our main observation is 47

that methods such as the classic push-pull algorithm [15] inpaint 48

missing regions with low-frequency content only, which can lead 49

to unconvincing results when the high-frequency statistics are not 50

matched. 51

Our hypothesis is that inpainting a disoccluded region with 52

visual metamers improves the plausibility of warped images 53

compared to naïve inpainting algorithms. This is aligned with 54

the physiology of human vision for two reasons: First, if inpainting 55

happens in the periphery – the largest part of the image – it 56

is known [12, 39, 48] that a metamer is perceived to be more 57

similar to a reference than blur. Second, if the inpainting happens 58

in the fovea, a metamer is favorable owing to the properties of 59

typical applications for warping: in stereo view synthesis, fusion 60

of regions without luminance patterns is harder or impossible, if 61

contradicting [7]. In temporal upsampling or latency compensation 62

applications, exposure of warped and inpainted frames is short, and 63

at short exposures, the human visual system largely behaves as a 64

texture discriminator [38], meaning that inpainting a disocclusion 65

with content of a similar texture to the background will likely be 66

sufficient. 67

Our implementation uses smooth image moments of steerable 68

filters that can be calculated in real-time to analyze the content 69

surrounding a disoccluded region, and synthesise a visual metamer 70

to fill the missing part. The key to making this work is inpainting 71

that stops at depth edges, and a one-pass extension to warping to fill 72

r.kuffnerdosanjos@leeds.ac.uk
https://vr.cs.ucl.ac.uk/research/pipelines/
https://vr.cs.ucl.ac.uk/research/pipelines/


2

Fig. 1: Overview of our approach, including a warping step with consistent depth, a inpainting of moments and a metamerization step.

disocclusions with reliable depth values useful for edge-stopping.73

Technical contributions of our work include:74

• A practical, parallel real-time method to fill disocclusion75

with patterns that share the visual statistics of their sur-76

roundings.77

• A method to fill disocclusions with background depth in a78

single pass based on depth range partitioning.79

2 RELATED WORK80

Our work combines two main themes in graphics: 3D image81

warping and plausible inpainting of image holes.82

Warping composes a target image under some condition (view,83

time, light) by deforming an image made under another condi-84

tion [28]. Common applications include temporal up-sampling [50],85

latency compensation [10] or synthesising stereo views from a86

single image [6]. A typical approach connects pixels at multiple87

resolution levels into polygons, which are then transformed and88

drawn into the new condition [6]. Alternatively, methods have89

been suggested to search for the source pixel to sample for the90

target image [32]. Several methods make use of more than one input91

image to be composed into a single target image [37, 43] or to store92

shading results into an atlas [31]. A primary difficulty with image93

warping is that some parts of the image under the target condition94

may not be observed in the source condition (disocclusion). Our95

approach is concerned with compensating for such missing areas96

with inpainting.97

Inpainting seeks to fill missing parts of images (“holes”) with98

plausible values. In our particular case, these holes are due to99

disocclusions of warping, although real-time inpainting has a range100

of other applications, including Diminished Reality (DR) [18, 30,101

42].102

A very simple inpainting method fills the colour values by103

a linear combination of neighbours, for example the popular104

push-pull method [15]. This approach is fast, but the resulting105

inpainted regions are strongly smoothed and lacking in higher106

frequency detail. More advanced methods exist, such as the often-107

used sequential approach [3], PatchMatch [1] and state-of-the-art108

methods using neural networks [44, 51, 52], but these are complex,109

non-GPU friendly and too computationally demanding for real-110

time, interactive applications. They are more suited to offline111

image-editing applications.112

The inpainting task is slightly different for image warping that113

typically comes with access to a depth buffer [4, 14, 47], and where114

inpainting should handle the foreground and background differently.115

However, the depth is often not known for the holes, meaning that116

using it in a guided filter is a particularly hard challenge.117

The idea of our inpainting is based on [48], which enables a fast118

method to extract spatially-localised statistics of filter responses119

[35] from a source image and apply them to a target image.120

Akin to texture synthesis, the resulting image is a “remix” of121

the input image that is perceived similarly i.e., they are metamers 122

of each other [11]. While the original method has been applied 123

to foveated rendering, where the statistics change according to 124

the pooling of the ventral stream [39, 46] we here apply it to 125

producing perceptually plausible patterns from a context. By 126

induction, these patterns should be particularly effective when 127

presented in the periphery of the viewer’s vision, where the visual 128

system only perceives pooled statistics, not details. Unlike other 129

classic [9, 17, 24, 25, 34, 49] or learned texture synthesis work 130

[13, 20, 21], this approach is localised in space (different textures 131

in different places) and runs in real-time as it makes use of constant 132

per-pixel time operations and moment maps [8]. 133

Inpainting is now routinely used for novel-view synthesis, 134

where stereo is estimated from a photo and warping in combination 135

with inpainting enables changing the viewpoint [19]. These 136

approaches rely on an intricate analysis of the input, a single 137

static image, often involving executing one or multiple neural 138

networks and optimizations that require in the order of seconds to 139

produce high-quality results for varying views [23, 45, 54]. Our 140

approach performs both the analysis of a changing input and the 141

synthesis of an output at high quality and at high speed. 142

3 REAL-TIME WARPING WITH PLAUSIBLE DISOC- 143

CLUSIONS 144

Overview Our approach computes a warped RGB map without 145

holes from an RGBZ map and a 2D flow map input as summarised 146

in Fig. 1. First, we perform a modified warping operation that 147

provides three results: the warped RGB map with holes, a warped 148

Z image with background depth in disoccluded areas, and a binary 149

disocclusion map (Sec. 3.1). Second, we calculate statistics of 150

visual features across the unoccluded areas of the RGB map 151

(Sec. 3.2). Third, we inpaint the disoccluded region with the 152

statistics using a depth-aware push-pull (Sec. 3.3). Finally, a RGB 153

realization of the statistics is computed to fill the disocclusions 154

(Sec. 3.4). We will detail all four steps next. 155

3.1 Warping with Background Depth in Disocclusions 156

Our inpainting requires a specific warping operation to produce 157

(1) an RGB map; (2) a binary occlusion map; and (3) a depth 158

map in which disoccluded pixels have the depth value of the 159

the background. The benefit of having background depth will be 160

explained in Sec. 3.3.2, but it is intuitive to assume that disoccluded 161

regions would have background depth and we want to inpaint from 162

background to background and not from foreground to foreground. 163

Classic warping will provide (1) and (2), but not (3), which can 164

be surprisingly hard to do. A naïve approach to get background 165

depth is to apply push-pull [15] to the depth buffer. Unfortunately, 166

this would create a smooth gradient of depth instead of the 167

background depth. What we need instead is strictly the background, 168

as we want the hole to be filled with a metamer that shares 169



3

Input
RG

B
D
ep

th
Vanilla Stretch-remove Ours

Fig. 2: Three ways to warp an input (first column) RGB image (top
row) in conjunction with depth (bottom row): Drawing all pixel
quads will “smear” the object across the image, producing neither
correct depth nor a disocclusion mask (second column). Removing
such stretched quads (third column) will avoid this issue and result
in an occlusion mask but undefined holes in depth. Our approach
fills holes with background depth (fourth column).

the statistics with only the background. Unfortunately, existing170

approaches to account for depth in push-pull [29] are not applicable171

here either, as they do not guarantee background, but close holes172

e.g., due to point rendering or foreground noise.173

Instead of fixing depth post-hoc from an already-warped image,174

we suggest to address this ab-initio on the level of the warping.175

The idea is as follows (Fig. 3): when warping, neighbouring pixels176

are drawn as quads [6, 28, 37]. When a quad stretches more than a177

threshold it means it connects foreground and background. We call178

such a quad to be stretched. Drawing them, a circle warped on top179

of a plane would leave an unwanted “trail” (Fig. 2, second column).180

Hence, stretched quads are typically discarded in previous work181

(Fig. 2, third column). Our idea is not to eliminate, but to keep182

them in a special way.183

RG
B

Co
m
m
on

Pa
rt
iti
on

ed

Input YesStretchNo Result

0 1

D
ep

th

0 .5

0 1

.51

Fig. 3: Combining stretched and non-stretched quads: The first
column shows the warped primitives in the scene from Fig. 2. The
second and third column split the primitives between stretched and
non-stretched ones. Both are drawn to the same colours and depth
buffer, but with altered depth values. Three particular quads are
indicated by the black lines in the image - two were not stretched
by the warping, and the one connecting them has been stretched.
The first row shows colour, the second row conventional depth
values and the third row depths using our partitioning. The last
column shows the result of the draw operations.

First, we note that the minimum of the depth of all four vertices184

of a stretched quad is an approximation of the background depth.185

Hence, we keep the stretched quad, but draw it in a special way as186

to only fill the hole with that minimal depth and leave all non-hole187

pixels unchanged. We do so by disabling interpolation of depths188

for stretched quads, writing the minimum depth of the four vertices189

at all pixels in the quad.190

However, we still need to ensure the stretched quads are only191

rendered into disoccluded regions, and encode the disocclusion 192

map in some way. We achieve both goals at once by re-partitioning 193

our depth range. The depth at each pixel d is replaced by the 194

re-partitioned depth dr according to the following rule: 195

dr =

{
0.5d if quad is not stretched
1−0.5d if quad is stretched

(1)

This maps all depths from non-stretched quads to the range 196

[0,0.5] and all depths from stretched quads to the range (0.5,1], 197

also flipping them in the process (i.e. 0.5 represents the greatest 198

possible depth, and 1.0 the smallest). Note this implicitly encodes 199

the disocclusion information in the depth map - if a pixel has a 200

depth greater than 0.5, it belongs to a stretched quad, and is thus in 201

a disoccluded region. 202

The remapping also means that stretched quads have greater 203

depth values than non-stretched quads, and will always fail the 204

depth test where a non-stretched quad is present. This means they 205

will only be drawn into disoccluded regions. 206

In the event that two stretched quads overlap in a disoccluded 207

region, since the depths are flipped, the quad with the greater raw 208

depth value d will be drawn. This is desirable as our goal in the 209

disoccluded regions is to render the surrounding background depths, 210

and as such it makes sense to pick the most distant depth value in 211

these cases. 212

For the purpose of the depth-aware inpainting, the depth values 213

can be un-partitioned and mapped back to the usual original range. 214

3.2 Features of an incomplete image 215

We calculate a steerable pyramid [12] of an input image I in a 216

decorrelated colour-space (YCbCr) [36], which estimates frequency 217

responses at different scales and perceptual channels, mimicking 218

the behaviour of the human visual system. Steerable pyramids 219

apply a pair of direction sensitive filters to each level in the MIP 220

map of I. The response to an orientation is a linear combination 221

of the two main filter directions. Applying multiple pyramids at 222

different orientations will deconstruct the image into frequencies 223

at different orientations and scales, similar to a two-dimensional 224

Fourier transform. Our pyramids are produced in real-time by 225

convolving the source image with a set of small spatial filters, 226

following [48]. We produce steerable pyramids for two orientations. 227

a) b) c)

Fig. 4: Applying a steerable pyramid filter to an image with missing
(disoccluded) regions can produce false responses. Disoccluded
regions are shown as checkerboards. a) Input image. b) Horizontal
filter response amplitudes show in red - note false responses around
disocclusion. c) Dilating the disoccluded region to remove false
responses.

However, if not treated specially, the missing regions in the 228

input images would produce spurious frequency responses in the 229

steerable pyramid, as the steerable filters would capture the change 230

from background content to blank pixels, as shown in Fig. 4. 231

The preferred way to handle undefined pixels are normalised 232

convolutions [22]. These simply sum the product of weights with 233

the alpha mask and divide (normalise) the convolution result by 234



4

this value. We will indeed use such techniques to apply convex235

filters for inpainting statistics. Unfortunately, the feature detection236

filters in a steerable filter pyramid, akin to oriented edge filters, are237

concave, and normalised convolutions are not valid for concave238

filters. In fact, since the sum of the weights of an oriented steerable239

pyramid filter is zero, normalising such a filter is not in general240

mathematically well-defined.241

Thus, after calculating the steerable pyramid of our input image,242

we expand the disoccluded region by the radius of our kernel K,243

treating its boundary as an unknown region, given that the filter244

responses there are unreliable. This is achieved by applying a245

morphological dilation operation to the disocclusion mask after246

filtering. Note, that the amount of dilation required is different for247

every level, as it depends on resolution. The dilated masks are only248

used where necessary, for performing convolutions with concave249

kernels - for other applications we use the original disocclusion250

masks.251

3.3 Inpainting Statistics252

Inpainting is performed for every level of the feature statistics253

pyramid independently. It maps a map of feature activations254

(explained in the previous Sec. 3.2) with holes to a map of255

feature activations statistics without holes. Two key aspects enable256

this, technically: very simple and compact moment descriptors257

(Sec. 3.3.1) and their edge-stopping inpainting (Sec. 3.3.2). We258

will discuss both, next.259

3.3.1 Weighted Moments260

We recall that [48] are creating smooth maps of moments (means E261

and variances V) of feature responses X . As V[X ] =E[X ]2−E[X2],262

in their task it is enough to blur feature maps X , as well as feature-263

square maps X2 to compute the first two moments. The same works264

for inpainting, as any operator EO that is a weighted mean (i.e.,265

linear, positive-weighted, partition of unity) will also induce a266

weighted variance VO[X ] = O[X ]2−O[X2]. Now, push-pull [15]267

itself is such a convex operator. Recall, that push-pull performs268

two passes: the first (pull) reduces resolution, averaging only valid269

values. The second (push) increases resolution again, replacing270

undefined pixels by blurry versions from a coarser resolution. Doing271

so, blur weights might vary spatially, even depend on context, but272

in the end they are positive weights, summing to one, multiplied273

with pixel values (be it pixel colour features or their squares), and274

therefore, push is also a convex operation. Hence, simply applying275

push-pull pp to the feature map X and squares-of-features map X2
276

produces two other per-pixel maps pp(X) and pp(X2) from which277

we read the two moments mean and variance pp(X)2−pp(X2), all278

in constant time per pixel and parallel.279

The original push-pull algorithm uses normalised convolutions280

[22] in which a reduction of several input pixels into one output281

pixel will make that output pixel entirely valid as soon as any of282

the input pixels is valid. This is because the normalised convolution283

divides by the sum of the weights, except for the case where284

the divisor is zero, in which case the output remains undefined.285

We found this to be less temporally stable and use the following286

modification. Instead of eagerly making pixels valid as soon as287

possible, we track also partial weights when pulling. Doing so,288

pixels become valid more slowly, hence later in the pyramid, and289

so the result becomes spatially more blurry. Note that this blur290

is in the statistics domain, so the metamer realization still has all291

frequencies, just that their statistics change more slowly over space.292

This again leads to overblurring. To adjust temporal stability and 293

spatial locality, we suggest applying a non-linearity to the alphas 294

after each normalised convolution by raising them to a power, γ . 295

For γ = 1, we have maximal temporal stability but spatial blur. For 296

γ = 0 we would have the original push-pull with good locality but 297

flicker. We present all our results for a compromise at γ = .5. 298

3.3.2 Edge-stopping 299

RG
B

Fe
at

ur
es

Input Pull-push Edge-stopping

Pu
ll 

0

Pu
ll 

1

Pu
ll 

2

Pu
ll 

3

Pu
sh

 2

Pu
sh

 1

Pu
sh

 0

a) b)

c)

RG
B Z

M
as

k

RG
B Z

M
as

k

RG
B Z

M
as

k

RG
B Z

M
as

k

RG
B Z

M
as

k

RG
B Z

M
as

k

RG
B Z

M
as

k

Fig. 5: a) Starting from an RGB (top) or feature map (Bottom) input
(first column), common inpainting will blend between foreground
and background areas (second column), while it should stop at
edges (third column). b) The desired behavior for three points
is to fetch information from circles just large enough to have
enough valid information, to ignore undefined values and to ignore
foreground values (darker yellow areas in the large circle). c) Our
depth-aware push-pull for an 8-pixel 1D image.

Inpainting will however have a problem with foreground objects. 300

For RGB images (top in Fig. 5, a), same as for the moments we use 301

(bottom in Fig. 5, a), there will be an unwanted gradient between 302

foreground appearance and background appearance as seen in the 303

second column. The third column shows the desired behavior: 304

inpainting the background. While we do not inpaint colours, but 305

moments, the problem –and solution– is the same. 306

We make use of the fact that the warping has marked holes but 307

also is filling them consistently with background depth (see section 308

Sec. 3.1). The assumption is that disoccluded pixels would rather 309

share statistics with the background than they would share with the 310

foreground. This is not universally true, but a heuristic. It would be 311

true for objects translating under an orthographic camera in front of 312

a planar background. When the object rotates, it would disocclude 313

parts of itself, which should belong to the foreground, an effect we 314

do not model. Under perspective, even without rotation, foreground 315

parts unobserved in the original view might become visible as well. 316

In both cases, our approach would allocate them to background, 317

shrinking the foreground object. 318

We adapt the push-pull to account for guidance by this depth 319

map as seen in Fig. 5, b: to fill a value, we pull from a region just 320

large enough to build statistics, but when doing so we ignore the 321

undefined pixel, as well as pixels belonging to the foreground, here, 322

yellow. 323

This is implemented as explained in Fig. 5, c. In the pull 324

phase, we consider always 2×2 pixels being combined into one. In 325

conventional push-pull, this is done by averaging all valid pixels 326

in each block of four. We instead first find the minimal depth 327

for the four-block. We then average those valid pixel values with 328

depths within a set threshold of the minimal depth in the block. 329



5

Thus, moments from foreground objects never pollute background330

objects. Pseudo-code of both steps is given in Alg. 1.331

Note that the PUSH procedure in Alg. 1 operates on two332

adjacent levels of the MIP pyramid, one high-resolution and one333

4x lower resolution. The inputs to the procedure are the colour334

and validity values sampled from these two levels, as well as the335

parameter γ that controls the temporal stability of the output.336

Algorithm 1 Pull and push step of metameric inpainting.

1: procedure PULL(colours[4], depths[4], validity[4])
2: minDepth← min(depths)
3: for i ∈ [1,4] do
4: if depths[i] - minDepth > threshold then
5: validity[i]← 0
6: end if
7: end for
8: outcolour← mean(colours × validity)
9: outValidity← mean(validity)

10: outDepth← minDepth
11: return outcolour, outValidity, outDepth
12: end procedure
13: procedure PUSH(locolour, hicolour, hiValidity, γ)
14: hiValidity← pow(hiValidity, γ)
15: return mix(hicolour, locolour, hiValidity)
16: end procedure

We note that whilst [29] also take depth into account in their337

pull phase, their goal is different. They inpaint in a surfel-based338

rendering setting, and attempt to avoid using background surfels339

visible in the gaps between foreground surfels. As such their depth340

test is reversed compared to ours; that is, they only draw from341

locations close to the maximal depth (closest to the camera).342

3.4 Synthesis for hole-filling343

Finally, we can use the statistics to synthesise content in the
missing region, similarly to [48]. Given the statistics (µ,σ ) of each
component i, j of a steerable pyramid of l levels and b orientations,
and a noise function ξi, j the result is

r[x] = µl +
l−1

∑
i=0

b−1

∑
j=0

µi, j[x]+ξi, j[x] ·σi, j[x]

where µl represents the residual lowpass of the steerable pyramid.344

The noise function ξi, j filters white noise with the same steerable345

filters used to construct the i, j component of the pyramid, and346

scales it to a {-1,1} interval, allowing it to be shaped to fit the347

distribution described by µi, j,σi, j. The other pixels can be copied348

from the input image, speeding up the process in the GPU.349

3.4.1 Avoiding the Screen-door Effect350

Use of a static noise function ξ in the synthesis process can lead to351

a visual artefact where background objects move, but noise remains352

static. We here refer to this artefact as the screen-door effect, by353

analogy with the similar artefact seen in VR headsets [2]. Since this354

artefact cannot be communicated in static images, we encourage355

readers to view our included video.356

This effect can be mitigated by modifying the location at which357

the noise function ξ is sampled - i.e. at a screen location (x,y),358

we sample ξ (x+ δx,y+ δy) where (δx,δy) are the motion of359

the pixel at (x,y) since the last rendered frame. Since we inpaint360

disoccluded regions, the motion (δx,δy) may not be known and 361

must be estimated. 362

When warping using a motion field, we can also warp the 363

motion field and apply the same depth-aware inpainting process 364

used in Sec. 3.3.2 to estimate motion in the disoccluded regions. 365

At each successive inpainted frame the sampling locations are 366

iteratively moved along the motion field. 367

When warping using a 6DoF camera transform T (to inpaint 368

360 video for example) we make use of the inpainted depths 369

to determine an appropriate sampling location P◦T ◦P−1(x,y,z), 370

where P is the camera projection function. 371

4 RESULTS 372

Here, we provide results from our implementation for metameric 373

image inpainting. We implemented our inpainting approach in 374

Unity, which was also used to render 3D scenes to provide input for 375

the approach. All results reported here use four steerable pyramid 376

levels, with two orientations and 5×5 kernels, computed at a 377

resolution of 1024×1024 unless said otherwise. 378

To provide a fair evaluation of our method, we also compare our 379

method with state-of-the-art literature. Our comparison includes a 380

naïve approach and a deep learning-based approach. 381

Naïve approach. The chosen method for the naïve approach 382

is an algorithm called image-space reconstruction using push-pull 383

interpolation [15]. Their algorithm consists of a pull phase and a 384

subsequent push phase. The pull phase computes an image pyramid 385

of a visual by reducing the image size with a factor of two at each 386

step in the image pyramid. Down-sampling averages all valid pixels 387

in each 2×2 pixel block of the image. In the push phase, pixels at 388

each level interpolate the missing pixels in the original visual. We 389

implemented the work by push-pull to derive results for the naïve 390

approach (Fig. 6). 391

Deep learning based approaches. The image inpainting prob- 392

lem has garnered significant interest in the machine learning 393

communities in recent years. We compare our approach to three 394

deep-learning based inpainting methods, [44, 51, 52] Both [52] and 395

[51] are image-based approaches, which accept an image with a 396

binary mask, and inpaint the masked portions of the image. [44] 397

instead reconstructs and completes a 3D mesh of the scene, which 398

is then rendered to produce an output image or video sequence. 399

Note that we do not compare quantitatively to [44]; this is because 400

in practice their reconstructed mesh did not perfectly match the 401

original geometry, resulting in high LPIPS errors that did not reflect 402

the visual quality of the output. For all methods we use trained 403

models provided by the authors. Results are shown in Tbl. 1. 404

Image quality Metamerised images do not have a common 405

standard for image quality measurement purposes. 406

TABLE 1: LPIPS image error for
different scenes and methods.

Our PP [52] [51]

Castle .037 .050 .038 .044
Castle2 .025 .033 .025 .030
Garden .017 .023 .017 .023
Shed .012 .016 .013 .018
Skate .017 .015 .013 .015
Tunnel .009 .013 .010 .013

.019 .025 .019 .024

Comparing images 407

with metamerised 408

versions of the 409

same images is 410

not straightforward. 411

Nevertheless, we applied 412

LPIPS [53] to measure 413

the difference of several 414

methods. 415

The methods were 416

compared on a series 417

of photogrammetric recon- 418

structions of real scenes, 419



6

mimicking the natural im-420

ages used to train the neural-network approaches. A breakdown is421

seen in Tbl. 1. In each case the LPIPS values are average results422

over a short 120-frame sequence rendered with each scene. LPIPS423

losses were computed over the disoccluded regions only, in order424

to prevent any small differences between warped and ground truth425

pixel values affecting the loss (this was achieved by setting pixels426

outside disoccluded regions to equal those in the ground truth427

images).428

TABLE 2: JOD values under [27] for
different scenes and methods.

Our PP [52] [51]

Castle 6.91 6.60 6.81 6.34
Castle2 7.41 7.27 7.35 6.76
Garden 7.75 7.66 7.71 6.96
Shed 7.93 7.85 7.84 6.86
Skate 8.02 7.84 7.95 7.21
Tunnel 7.99 7.77 7.66 7.94

7.67 7.50 7.56 6.85

We additionally429

compared the results430

of each method to the431

ground truth under the432

FovVideoVDP metric433

[27]. This is a perceptual434

metric of video quality,435

and tests for artefacts436

such as noise, or temporal437

flickering. This metric438

requires a model of439

the display used; for440

these tests, we used the441

“standard_fhd” model442

provided by the authors. Results are given as Just Objectionable443

Difference (JOD) values, which range from 0 to 10 (greater is444

better).445

Speed We evaluate the performance of our inpainting446

implementation discussed in Sec. 3 compared to the clas-447

sic push pull work by Gortler et al. [15] and a neural448

network-based inpainting approach by Yu et al. [52] (Tbl. 3).449

These results were obtained on a machine using an NVIDIA450

RTX 2070 GPU and an AMD Ryzen 3700X processor.451

TABLE 3: Compute time.

Res. Time

Ours (5 lev.) 5122 6.58 ms
10242 17.86 ms
20482 59.52 ms

Ours (3 lev.) 5122 5.75 ms
10242 16.56 ms
20482 57.80 ms

Push-pull 5122 1.47 ms
10242 2.56 ms
20482 8.70 ms

Neural net. >1 s

We note that both push-452

pull and our own approach453

are more than an order454

of magnitude faster than455

the neural network ap-456

proaches, and thus far bet-457

ter suited to real-time ap-458

plications. It is challeng-459

ing to directly compare to460

[44], as this method gener-461

ates an inpainted 3D mesh462

through a computationally463

expensive process taking464

several minutes, but this465

mesh can then be rendered466

at interactive rates. How-467

ever we note that any significant change to scene geometry or468

viewpoint would necessitate regenerating this mesh, making it469

unsuited to interactive 3D applications. By comparison to push-470

pull, our approach is roughly six times slower, owing mainly to the471

need to inpaint multiple pyramid levels rather than a single frame.472

We also compared our modified warping approach described473

in Sec. 3.1 to the naïve approach of discarding overly stretched474

triangles (rather than rendering them to produce estimates of the475

background depth).476

Both approaches were implemented in shader code within the477

Unity game engine. In practice, the runtime of both approaches478

was identical. In principle the naïve approach discards triangles,479

reducing the rendering cost. However, only a very small proportion480

of the total triangles are affected, and this did not have a measurable 481

impact on frame rate, even at high resolutions. 482

5 USER STUDY 483

We conducted a user study to validate our hypothesis outlined 484

in Sec. 3; that metameric image inpainting can be perceived as 485

a closer approximation of a complete image than colour-based 486

inpainting when both are visualised for a short amount of time. 487

A total of N = 11 participants were recruited to carry out the 488

experiment using a desktop-based Unity3D application. All of the 489

experiments were carried out using the same screen and viewing 490

distance to ensure comparable conditions. We compared having a 491

ground truth video sequence to warping and inpainting using: push- 492

pull interpolation [15], and metameric inpainting. To the best of our 493

knowledge, there is no published neural network-based approach 494

that works in real time that could be included in this comparison 495

for the video resolution used in our study (2048×2048). 496

Protocol Participants were shown pairs of videos, time-divided, 497

for 3 seconds each with a randomised display order. Videos were 498

presented to users on a 27" FHD monitor, placed approximately 499

70cm away from the participants. All participants used the same 500

display setup. Videos contained circular motion parallel to the 501

image plane, revealing small (S) or large (L) disoccluded regions 502

to be inpainted with each method. We included these variants to 503

evaluate if the size of disocclusion had any effect on the success of 504

each method. So for a total of six method-combinations (Reference, 505

PP, Ours, with small and large disocclusions, only comparing within 506

same size), users were shown six example scenes with two repeats, 507

for a total of seventy-two decisions per participant. Participants 508

were asked to choose which image they preferred from each pair 509

(2AFC). Subjects were primed to consider “artifacts” and “overall 510

quality”. 511

Analysis Fig. 7 summarises preferences as probabilities for 512

each combination. For each pair we perform a binomial test to 513

check significance compared to chance. In all cases participants 514

distinguished the inpainted stimuli from reference, though with 515

a stronger effect size for PP compared to Ours. We find that our 516

approach is preferred over PP in both small and large disocclusions 517

with significant effects. This verifies our hypothesis that our 518

approach produces inpainted content that is perceived as more 519

plausible than previous work. Moreover, during post-experience 520

interviews, subjects mentioned that metameric inpainting performed 521

best when they were not looking directly at the inpainted regions, 522

i.e. when happening in the periphery. The next section will discuss 523

this in further detail, and how this can be applied to real use-case 524

scenarios. 525

Foveated display application Metameric inpainting is best suited 526

for peripheral vision, where the HVS is challenged to tell metamers 527

from a reference [12, 48]. When we use them in the fovea as well, 528

that is due to the lack of any better alternative, but we do not claim 529

that they are perceived equivalently to a reference, only better than 530

push-pull would be. 531

Foveated displays such as the Varjo XR-3, however, very well 532

fit the metameric assumptions. They combine two displays, one 533

with a high pixel density to be shown to the fovea and one with a 534

lower pixel density shown to the periphery. These two displays are 535

combined optically. When we reduce the image compute frequency 536

of the peripheral display (for example from 90 to 30 Hz) we can 537

use warping-based temporal upsampling [5, 6] with metameric 538

inpainting to go back to 90 Hz. The foveal display keeps the 539



7

Fig. 6: Comparison of our metameric image inpainting method with push-pull [15] and a deep learning-based approach [52]. The first
row shows the warped frame with a checkerboard to reveal disocclusions. Columns two, three and four are push-pull, NN and our method
while the last column shows the reference of the target frame. Overall, our approach fares equally well or better than a NN while being
two orders of magnitude faster. Please see the text in Sec. 6 for a detailed discussion.

[Scenes created by aurelien_martel@SketchFab, noxfcna@sketchfab, artfletch@sketchfab]

https://sketchfab.com/aurelien_martel
https://sketchfab.com/noxfcna@sketchfab
https://sketchfab.com/artfletch@sketchfab


8

REFERENCE0.95 
OURS REFERENCE0.83 
OURS 0.12 

PP REFERENCE1.00
OURS REFERENCE0.95 
OURS 0.20

0 0.2 0.4 0.6 0.8 1

PP

PP

PP

Small

Large

Fig. 7: Preferences as proportions for different forced binary
choices between different treatments. All statements significant to
p < .0001.

original 90 Hz. Like this, central vision is unaffected and the540

periphery sees a metamer it cannot distinguish from the reference.541

We simulate appearance on a Varjo XR-3 in Fig. 9. We see that542

fixating the image center, a metameric warping is similar to the543

reference, while it is not for push-pull which appears blurry.544

A limitation of this approach is that a foveated display will545

always show an optically band-limited version of the metamer, and546

hence can never fully match the reference in the periphery. Still,547

the frequency range present is sufficient to outperform push-pull.548

6 DISCUSSION549

Our user study confirmed our hypothesis that metameric inpainting550

produces more plausible inpainted content than pull-push. This551

section will discuss the results of our quantitative comparison to552

other approaches, and show some specific examples.553

In the quantitative comparison in Tbl. 1, our approach out-554

performs the others on all but one of the compared scenes. This555

is despite our method being more than an order of magnitude556

faster than the deep learning-based methods. As might be expected,557

methods [51, 52] suffer from flickering in the output videos, as558

they have no mechanism to enforce temporal consistency. This559

is reflected in their lower scores in Tbl. 2. [44] produced results560

with much better temporal consistency, but occasionally inaccurate561

geometry would be produced in the inpainted regions, harming the562

perceived quality of the results. Full results and videos are included563

in the supplemental material.564

A comparison between our approach and naïve inpainting can565

be seen in Fig. 8. In both scenes, metameric inpainting is able to566

fill in the disoccluded region with plausible texture content that567

matches its surroundings, while not introducing unrealistic artifacts.568

Notably, our approach produces sharper outlines on foreground569

objects, and specially on the example to the right, is able to closely570

simulate the textured background. These examples also demonstrate571

how when located in the periphery, our approach is less noticeable572

than PP.573

Fig. 6 shows an in-depth comparison between our approach574

and the proposed alternatives. Here we compare to [52], the575

deep learning approach that performed best in the quantitative576

comparison. Our approach does not distort the shape of foreground577

objects when inpainting background. On the Treehouse example,578

we can see the PP approach and [52] distorting the shape of the tree579

and wood beams, while ours preserves it. Similarly on the church,580

with the chandelier beams being distorted by these approaches.581

When comparing only to the PP approach, the teaser figure shows582

the flowers bleeding into the background, and both examples on583

Fig. 8 show similar foreground distortion effects. While [52] was584

able to better predict the wood texture on the treehouse, and create585

a more plausible result on the church, the results produced by our 586

metameric inpainting are plausible synthesised textures, blending 587

well with the environment and approximating the ground truth. A 588

similar effect can be seen in Figure Fig. 6, b, with the content 589

disoccluded by the pillar, and with the background of Fig. 8 d. The 590

Japanese House scene shows an example of a failure case of [52], 591

which predicted nonexistent objects in the disoccluded region. Our 592

approach is able to produce correct textures for the wall section 593

behind the pillar, with the higher frequency content being more in 594

line with the reference than push-pull. 595

Limitations Our approach for temporal stability addresses the 596

locality issue of push pull. However, new content being revealed as 597

the size of disocclusions increases will inevitably introduce sudden 598

changes in the calculated statistics, and the inpainted content. 599

However, this limitation is only visible in large disocclusions, 600

which are not the typical use cases discussed in this paper, or the 601

highlighted applications. Even so, our approach was still found to be 602

better than pull-push on large disocclusions. However, addressing 603

these limitations would allow more freedom of movement in 604

applications such as 6-DoF for 360 content or free viewpoint 605

video for lumigraphs. 606

As seen in Fig. 10, we are not able to address the limitation 607

of push pull of not being able to reproduce sharp edges in the 608

disoccluded region, even if we correctly reproduce nearby textured 609

patterns. Such scenarios are able to be addressed in offline methods 610

(e.g. neural network approaches), and should be investigated for 611

real-time in future work. 612

Finally, warping itself is subject to a number of limitations 613

that cannot be overcome by our method such as handling of anti- 614

aliased edges, motion blur or depth-of-field. We note, however, 615

that anti-aliasing can be applied to the output of our approach, for 616

example by rendering at a higher resolution and downsampling, 617

or by applying any post-processing anti-aliasing approach such as 618

Fast Approximate Anti-Aliasing [26]. Other post-processing effects 619

(e.g. depth-based fog) could also be added at this stage. 620

7 CONCLUSIONS 621

We have proposed a method to combine the speed of classic 622

RGB push-pull inpainting [15] with the quality of structured 623

inpainting [3]. The neurophysiology of human perception inspires 624

our proposal, which postulates the visual system to operate on 625

statistics of features [48]. Hence, holes should not be filled with 626

colours that agree with their surroundings, but with a pattern with 627

the same statistics. Our approach provides a practical method to do 628

so. 629

We inherit the typical limitations of warping, struggling with 630

anti-aliasing, specular shading and transparent objects. Also, our 631

approach is slower than push-pull on RGB, given that more 632

calculations are needed. Usefulness depends on the application, the 633

size of the warp (and hence the size of the holes), and the cost 634

of rendering. Future work could combine foveated rendering and 635

foveated inpainting. 636

We believe various applications such as depth image-based 637

rendering, 6-DoF rendering, and remote rendering-streaming can 638

take advantage of our method, which combines high-performance 639

computation and perceptual principles. 640

ACKNOWLEDGMENTS 641

This work was funded in part by the EPSRC/UKRI project 642

EP/T01346X/1. 643



9

Fig. 8: Comparison between push-pull [15] (top) and ours (bottom) on a variety of additional scenes. [Scenes created by
bastienBGR@SketchFab and aurelien_martel@SketchFab]

REFERENCES

[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. Patchmatch: A randomized correspondence
algorithm for structural image editing. ACM Trans. Graph.,
28(3):24, 2009.

[2] Joung-min Cho, Young-do Kim, Song Hee Jung, Hyunchang
Shin, and Taesung Kim. 78-4: Screen door effect mitigation
and its quantitative evaluation in vr display. In SID Symposium
Digest of Technical Papers, volume 48, pages 1154–1156.
Wiley Online Library, 2017.

[3] Antonio Criminisi, Patrick Pérez, and Kentaro Toyama.
Region filling and object removal by exemplar-based image
inpainting. IEEE Trans. Image Processing, 13(9):1200–1212,
2004.

[4] Ismael Daribo and Béatrice Pesquet-Popescu. Depth-aided
image inpainting for novel view synthesis. In IEEE Inte
workshop on multimedia signal processing, pages 167–170,
2010.

[5] Gyorgy Denes, Kuba Maruszczyk, George Ash, and Rafał K
Mantiuk. Temporal resolution multiplexing: Exploiting the
limitations of spatio-temporal vision for more efficient vr
rendering. IEEE Trans. Vis. and Comp. Graph, 25(5):2072–
82, 2019.

[6] Piotr Didyk, Tobias Ritschel, Elmar Eisemann, Karol
Myszkowski, and Hans-Peter Seidel. Adaptive image-space
stereo view synthesis. In VMV, number 1, 2, pages 299–306,
2010.

[7] Piotr Didyk, Tobias Ritschel, Elmar Eisemann, Karol
Myszkowski, Hans-Peter Seidel, and Wojciech Matusik. A
luminance-contrast-aware disparity model and applications.

ACM Trans Graph (Proc. SIGGRAPH Asia), 31(6), 2012.
[8] William Donnelly and Andrew Lauritzen. Variance shadow

maps. In Proc. ACM I3D, pages 161–165, 2006.
[9] Alexei A Efros and Thomas K Leung. Texture synthesis by

non-parametric sampling. In ICCV, volume 2, pages 1033–
1038, 1999.

[10] Daniel Evangelakos and Michael Mara. Extended timewarp
latency compensation for virtual reality. In I3D, page 193–94,
2016.

[11] Jeremy Freeman and Eero P Simoncelli. Metamers of the
ventral stream. Nature Neuroscience, 14(9):1195–1201, 2011.

[12] William T Freeman, Edward H Adelson, et al. The design and
use of steerable filters. IEEE PAMI, 13(9):891–906, 1991.

[13] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.
Image style transfer using convolutional neural networks. In
CVPR, pages 2414–2423, 2016.

[14] Josselin Gautier, Olivier Le Meur, and Christine Guillemot.
Depth-based image completion for view synthesis. In EDTV,
pages 1–4, 2011.

[15] Steven J Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F Cohen. The lumigraph. In SIGGRAPH, pages
43–54, 1996.

[16] John A. Greenwood, Peter J. Bex, and Steven C. Dakin.
Positional averaging explains crowding with letter-like stimuli.
Proc NAS US, 106(31):13130–5, 2009.

[17] David J Heeger and James R Bergen. Pyramid-based texture
analysis/synthesis. In Proc. SIGGRAPH, pages 229–238,
1995.

[18] Jan Herling and Wolfgang Broll. High-quality real-time video
inpaintingwith pixmix. IEEE Transactions on Visualization
and Computer Graphics, 20(6):866–879, 2014.

https://sketchfab.com/bastienBGR
https://sketchfab.com/aurelien_martel


10

Fig. 9: Temporal up-sampling in the periphery on a foveated displays. The top row shows a Varjo XR-3-like setup: a dense fovea (ca.
100 pixels per degree) at high refresh rate (90 Hz) and a sparse periphery (10 ppd) at low refresh (30 Hz), up-sampled in time. the second
row is our method, to be compared to the reference in the third row, and push-pull in the last row. When fixating the yellow dot on a A4
printout in a stretched arm’s distance, blur from push-pull is perceived in the periphery, while ours appears plausible.

Fig. 10: Limitation of our method: although it performs well
on textured regions (left, center), sharp oriented edges are not
synthesised correctly in the disoccluded region (right).

[19] Youichi Horry, Ken-Ichi Anjyo, and Kiyoshi Arai. Tour into
the picture: using a spidery mesh interface to make animation
from a single image. In SIGGRAPH, pages 225–32, 1997.

[20] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In ICCV,

pages 1501–1510, 2017.
[21] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In
ECCV, pages 694–711, 2016.

[22] Hans Knutsson and C-F Westin. Normalized and differential
convolution. In CVPR, pages 515–523, 1993.

[23] Johannes Kopf, Kevin Matzen, Suhib Alsisan, Ocean Quigley,
Francis Ge, Yangming Chong, Josh Patterson, Jan-Michael
Frahm, Shu Wu, Matthew Yu, et al. One shot 3D photography.
ACM Trans. Graph. (Proc. SIGGRAPH), 39(4), 2020.

[24] Ares Lagae, Peter Vangorp, Toon Lenaerts, and Philip
Dutré. Procedural isotropic stochastic textures by example.
Computers & Graphics, 34(4):312–321, 2010.

[25] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-
Yeung Shum. Real-time texture synthesis by patch-based
sampling. ACM Trans Graph, 20(3):127–150, 2001.

[26] Timothy Lottes. FXAA. White Paper, NVIDIA, 2009.
[27] Rafał K Mantiuk, Gyorgy Denes, Alexandre Chapiro, Anton

Kaplanyan, Gizem Rufo, Romain Bachy, Trisha Lian, and
Anjul Patney. Fovvideovdp: A visible difference predictor



11

for wide field-of-view video. ACM Transactions on Graphics
(TOG), 40(4):1–19, 2021.

[28] William R Mark, Leonard McMillan, and Gary Bishop. Post-
rendering 3d warping. In I3D, pages 7–ff, 1997.

[29] Ricardo Marroquim, Martin Kraus, and Paulo Roma Caval-
canti. Efficient point-based rendering using image reconstruc-
tion. In SPBG, pages 101–108, 2007.

[30] Shohei Mori, Okan Erat, Wolfgang Broll, Hideo Saito, Dieter
Schmalstieg, and Denis Kalkofen. Inpaintfusion: incremental
rgb-d inpainting for 3d scenes. IEEE Transactions on
Visualization and Computer Graphics, 26(10):2994–3007,
2020.

[31] Joerg H Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff,
Mina Makar, Markus Steinberger, and Dieter Schmalstieg.
Shading atlas streaming. ACM Trans. Graph., 37(6):1–16,
2018.

[32] Diego Nehab, Pedro V Sander, Jason Lawrence, Natalya
Tatarchuk, and John R Isidoro. Accelerating real-time shading
with reverse reprojection caching. In Graphics Hardware,
volume 41, pages 61–62, 2007.

[33] Makoto Okabe, Keita Noda, Yoshinori Dobashi, and Ken
Anjyo. Interactive video completion. IEEE Computer
Graphics and Applications, 40(1):127–139, 2019.

[34] Ken Perlin. An image synthesizer. ACM Siggraph Computer
Graphics, 19(3):287–296, 1985.

[35] Javier Portilla and Eero P Simoncelli. A parametric texture
model based on joint statistics of complex wavelet coefficients.
Int J Comp Vis, 40(1):49–70, 2000.

[36] Charles Poynton. Digital Video and HD: Algorithms and
Interfaces. Morgan Kaufmann, 2012.

[37] Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo
Cuervo, David Chu, and Hans-Peter Seidel. Proxy-guided
image-based rendering for mobile devices. In Comp. Graph.
Forum, volume 35, pages 353–362, 2016.

[38] Laura Walker Renninger and Jitendra Malik. When is scene
identification just texture recognition? Vision research, 44
(19):2301–2311, 2004.

[39] R Rosenholtz. Capabilities and limitations of peripheral
vision. Annual review of vision science, 2:437, 2016.

[40] Ruth Rosenholtz, Jie Huang, Alvin Raj, Benjamin J. Balas,
and Livia Ilie. A summary statistic representation in periph-
eral vision explains visual search. J Vision, 12(4):14–14, apr
2012.

[41] Anita M Schmid, Keith P Purpura, Ifije E Ohiorhenuan,
Ferenc Mechler, and Jonathan D Victor. Subpopulations
of neurons in visual area v2 perform differentiation and
integration operations in space and time. Frontiers in systems
neuroscience, 3:15, 2009.

[42] Thomas Schöps, Martin R Oswald, Pablo Speciale, Shuoran
Yang, and Marc Pollefeys. Real-time view correction for
mobile devices. IEEE transactions on visualization and
computer graphics, 23(11):2455–2462, 2017.

[43] Jonathan Shade, Steven Gortler, Li-wei He, and Richard
Szeliski. Layered depth images. In SIGGRAPH, pages 231–
242, 1998.

[44] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[45] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3D photography using context-aware layered depth

inpainting. In CVPR, pages 8028–38, 2020.
[46] Hans Strasburger, Ingo Rentschler, and Martin Jüttner. Pe-

ripheral vision and pattern recognition: A review. J Vision, 11
(5):13–13, 2011.

[47] Zinovi Tauber, Ze-Nian Li, and Mark S Drew. Review
and preview: Disocclusion by inpainting for image-based
rendering. IEEE Trans Systems, Man, and Cybernetics C, 37
(4):527–540, 2007.

[48] David R. Walton, Rafael Kuffner Dos Anjos, Sebastian
Friston, David Swapp, Kaan Akşit, Anthony Steed, and
Tobias Ritschel. Beyond blur: Ventral metamers for foveated
rendering. ACM Trans. Graph. (Proc. SIGGRAPH 2021), 40
(4), 2021.

[49] Li-Yi Wei, Sylvain Lefebvre, Vivek Kwatra, and Greg Turk.
State of the art in example-based texture synthesis. In
Eurographics STAR, pages 93–117, 2009.

[50] Lei Yang, Yu-Chiu Tse, Pedro V. Sander, Jason Lawrence,
Diego Nehab, Hugues Hoppe, and Clara L. Wilkins. Image-
based bidirectional scene reprojection. ACM Trans. Graph.,
30(6):1, 2011.

[51] Zili Yi, Qiang Tang, Shekoofeh Azizi, Daesik Jang, and
Zhan Xu. Contextual residual aggregation for ultra high-
resolution image inpainting. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 7508–7517, 2020.

[52] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and
Thomas S Huang. Free-form image inpainting with gated
convolution. In CVPR, pages 4471–4480, 2019.

[53] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, pages 586–95,
2018.

[54] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: learning view
synthesis using multiplane images. ACM Trams Graph. (Proc.
SIGGRAPH), 37(4):1–12, 2018.

Rafael Kuffner dos Anjos is a Lecturer in Com-
puter Graphics at University of Leeds. He ob-
tained his PhD (2018) from the University of
Lisbon where he focused on Video-based ren-
dering for point cloud data, applied to VR/AR.
He has previously worked at Victoria University
of Wellington on computer graphics techniques
for entertainment industry pipelines, and at Uni-
versity College London, focusing on perception
and real-time rendering for VR/AR. His current
research interests are Image based rendering,

Perception, Point-clouds, VR/AR.

David R. Walton was awarded his EngD from
University College London in 2019, focusing on
applying computer vision and sensing hardware
to improve AR rendering. From 2020 he has
worked at University College London as a Re-
search Fellow. His research interests include
foveated rendering, human visual perception,
novel display technologies and virtual & aug-
mented reality.



12

Kaan Akşit is an Associate Professor in the
computer science department at University Col-
lege London. Kaan received his PhD in elec-
trical engineering at Koç University, Turkey, in
2014. Kaan researches the intersection of light
and computation, including computational ap-
proaches in imaging, graphics, fabrication and
displays. Kaan’s research works are most known
among the optics and graphic community for his
contributions to display technologies dedicated
to virtual reality, augmented reality, and three-

dimensional displays with glasses and without glasses. He worked as
a research intern in Philips Research, the Netherlands, and Disney
Research, Switzerland, in 2009 and 2013, respectively. He was a scientist
at NVIDIA, between 2014 and 2020. He is the recipient of Emerging
Technologies best in show awards in SIGGRAPH 2019 and SIGGRAPH
2018, DCEXPO special prize in SIGGRAPH 2017, and among the best
papers in IEEE VR 2021, IEEE VR 2019, ISMAR 2018, and IEEE VR
2017.

Sebastian Friston received his EngD from Uni-
versity College London in 2017. He is a currently
a Research Associate in the Virtual Environments
and Computer Graphics group at University Col-
lege London. His work has received the IEEE
VR Best Dissertation Award (2018). His research
interests are in how to build high fidelity virtual
worlds.

David Swapp received his PhD in 1996 from
the University of Aberdeen. He is currently a
Senior Research Fellow at University College
London where he collaborates on a wide range of
research and experimental work, with particular
interest in how knowledge of human perceptual
mechanisms can be exploited to overcome tech-
nical limitations of VR systems.

Anthony Steed Professor Anthony Steed, Mem-
ber of IEEE,was awarded his PhD in 1996 from
Queen Mary College, University of London in
the area of immersive virtual reality systems.
From 1996 he has been at University College
London, first as a Research Fellow, then as Lec-
turer, Senior Lecturer, Reader and, since 2009,
Professor. His research interests range from real-
time computer graphics systems, through novel
displays, to user-evaluation techniques. In 2018-
2019 he was a Visiting Scientist at Microsoft

Research, Redmond. In 2019 he visited Christchurch, New Zealand,
supported by an Erskine Fellowship. He was the recipient of the IEEE
VGTC’s 2016 Virtual Reality Technical Achievement Award.

Tobias Ritschel received his PhD from Saarland
University (MPI) in 2009. He was a post-doctoral
researcher at Telecom ParisTech / CNRS 2009-
10 and a Senior Researcher at MPI 2010-15. To-
bias was appointed Senior Lecturer at University
College London in 2015 where he was named
Full Professor of Computer Graphics in 2019. His
work has received the EG Dissertation (2010)
and Young Researcher Award (2014). His inter-
ests include Image Synthesis and Human Visual
Perception, now frequently including applied AI.


	Introduction
	Related Work
	Real-time Warping with Plausible Disocclusions
	Warping with Background Depth in Disocclusions
	Features of an incomplete image
	Inpainting Statistics
	Weighted Moments
	Edge-stopping

	Synthesis for hole-filling
	Avoiding the Screen-door Effect


	Results
	User Study
	Discussion
	Conclusions
	Biographies
	Rafael Kuffner dos Anjos
	David R. Walton
	Kaan Aksit
	Sebastian Friston
	David Swapp
	Anthony Steed
	Tobias Ritschel


