
Dynamic Occlusion Handling for Real-Time AR Applications
Joaquim Jorge

INESC-ID / Técnico / U. Lisboa
Lisboa, Portugal
jorgej@acm.org

Rafael Kuffner dos Anjos
INESC-ID / Técnico / U. Lisboa

Lisboa, Portugal
ranjos@acm.org

Ricardo Silva
Instituto Superior Técnico / U. Lisboa

Lisboa, Portugal
ricardo10silva@gmail.com

ABSTRACT
Augmented reality (AR) allows computer generated graphics to
be overlaid in images or video captured by a camera in real time.
This technology is often used to enhance perception by providing
extra information or simply by enriching the experience of the
user. AR offers a significant potential in many applications such as
industrial, medical, education and entertainment. However, for AR
to achieve the maximum potential and become fully accepted, the
real and virtual objects within the user’s environment must become
seamlessly integrated. Three main types of problems arise when we
try to achieve this effect: illumination issues, tracking difficulties
and occlusion troubles. In this work we present an algorithm to
handle AR occlusions in real time. Our approach uses raw depth
information of the scene to realize a rough foreground / background
segmentation. We use this information, as well as details from color
data to estimate a blending coefficient and combine the virtual ob-
jects with the real objects into a single image. After experimenting
with different scenes we show that our approach is able to produce
consistent and aesthetically pleasing occlusions between virtual
and real objects, with a low computational cost. Furthermore, we
explore different alternatives to improving the quality of the final
results while overcoming limitations of previous methods.

CCS CONCEPTS
•Computingmethodologies→Visibility;Mixed / augmented
reality; Rendering.

KEYWORDS
Augmented Reality, Real-time Realistic Occlusion, Dynamic Occlu-
sion Handling, Alpha Matting

ACM Reference Format:
Joaquim Jorge, Rafael Kuffner dos Anjos, and Ricardo Silva. 2019. Dynamic
Occlusion Handling for Real-Time ARApplications. In The 17th International
Conference on Virtual-Reality Continuum and its Applications in Industry
(VRCAI ’19), November 14–16, 2019, Brisbane, QLD, Australia. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3359997.3365700

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VRCAI ’19, November 14–16, 2019, Brisbane, QLD, Australia
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7002-8/19/11. . . $15.00
https://doi.org/10.1145/3359997.3365700

1 INTRODUCTION
Augmented reality (AR) is an upcoming technology that allows
computer generated graphics to be overlaid in images or video
captured by a camera in real time. This technology is often used to
enhance perception by providing extra information or simply by
enriching the experience of the user. Recent results show that AR
offers a significant potential in many applications such as indus-
trial [Schmirler et al. 2018], medical [Lopes and Jorge 2019; Zorzal
et al. 2019], education [Herbert et al. 2018; Preim and Saalfeld 2018]
and entertainment [Schmidt et al. 2019; Shah et al. 2012].

According to Breen et al. [Breen et al. 1995] for AR to achieve the
maximum potential and become fully accepted, the real and virtual
objects within the user’s environment must become seamlessly
integrated. Three main types of problems arise when we try to
achieve this effect: illumination problems, tracking problems and
occlusion problems.

Occlusion occurs when an object closer to the viewer obscures
the view of objects further away [Breen et al. 1995]. In most AR
applications the virtual objects occlude the real objects but some-
times the opposite can happen. For example, when the virtual object
moves behind a real object, which can cause an incorrect occlusion
[Zhu et al. 2010]. Research on this problem developed three dif-
ferent approaches: Model-based [Breen et al. 1995], [Fischer et al.
2003], [A. Fortin and Hebert 2006], Object-based [Lepetit and Marie-
Odile 2000], [Yuan et al. 2010] and Depth-based [Breen et al. 1995],
[M. Wloka and G. Anderson 1995], [Hayashi et al. 2005].

In this work we focus on solving the occlusion problem in a real-
istic manner. As depth sensors evolve algorithms we can now use
depth information to handle occlusions. However, the information
provided by the sensors still has some problems: different types of
noise, shadow effects and inaccurate mapping between depth and
color data.

To improve the depth information researchers have come with
multiple ways to improve the depth maps provided by the sensors
[Du et al. 2016; Leal et al. 2013; Schmeing and Jiang 2014]. Du et al.
[Du et al. 2016] proposed a technique where the depth map edges
can be aligned with the color map edges. This method only works
well if the background and foreground are clearly distinguishable
so it still does not provide a robust answer to the problem. On
top of that, sometimes fuzzy objects can cause regions or pixels
to not explicitly be on the foreground or on the background. In
those cases we can get a more realistic result if we determine the
relative transparency of the objects instead of just trying to figure
out if they should be in front or in the back of each other. So, we
can conclude that instead of just trying to find if we should display
the virtual objects or the real objects in a per pixel basis a better
approach would be to determine a blending coefficient for each
pixel, also called alpha matte.

https://doi.org/10.1145/3359997.3365700
https://doi.org/10.1145/3359997.3365700

VRCAI ’19, November 14–16, 2019, Brisbane, QLD, Australia Jorge, et al.

In this work we tackle the occlusion problem as an alpha matting
problem and propose a method that is able to produce realistic
occlusions in static and dynamic scenes. As a starting point we
took inspiration from [Hebborn et al. 2017] and we propose some
changes to that algorithm to improve the quality of the results.

This document is organized as follows: Section 1 introduces the
problem and describes the objectives of the work. Section 2 de-
scribes occlusion as an alpha matting problem. In Section 3 we
discuss the related work about this subject. In Section 4 we describe
the overview of the proposed approach. Section 5 to Section 10
describe the method in detail. Section 11 describes technical in-
formation about the implementation of our technique and some
performance measurements. In Section 12 we show the obtained
results and compare them to other methods of performing occlu-
sions. Finally, in Section 13 we discuss some limitations of the
proposed approach as well as provide some pointers to what could
be improved in the future.

2 PROBLEM FORMULATION
We will tackle the occlusion handling problem as an alpha mat-
ting problem. Alpha matting addresses the problem of extracting
foreground objects from static images or video sequences. Pre-
cisely separating a foreground object from the background can be
achieved by estimating the alpha value for each pixel individually.
An image I can be mathematically described as a combination of
the foreground image F and the background image B:

I = αF + (1 − α)B (1)

where α defines the alpha matte (with α ∈ [0, 1]). We can use alpha
matting to determine the alpha matte of the scene. We have to
precisely separate the foreground objects (parts of the real scene
that occlude virtual objects) from the background (objects that lie in
the back of virtual objects). By calculating the alpha matte we can
then draw the scene using Equation (1) to combine virtual and real
objects into a single image. Most alpha matting problems require
a user-specified trimap to use as a starting point. A trimap is an
image that segments the scene into three non-overlapping regions:
definitely background, definitely foreground and unknown regions
where it is not possible to determine if the real objects are behind or
in front of the virtual objects. It can be concluded that this problem
has two main challenges: automatic generation of a trimap based
on the relation between real and virtual objects and estimation of
the alpha matte. Both the generated trimap should be precise and
the unknown regions should be as small to ensure good results.

3 RELATEDWORK
The main problems associated with this subject are how to improve
the rough depth data captured by the sensor and study different
methods for performing occlusion in the context of AR. We also
researched about the alpha matting problem used to separate the
background and foreground of images in different contexts. Finally
we also looked at ways of generating trimaps without user input
and in real time.

3.1 Occlusion Handling
Several approaches have been proposed to solve the occlusion prob-
lem. Here we present our technique and discuss the results obtained
by each approach. According to Hebborn et al. [Hebborn et al. 2017]
there are three main approaches used to solve the occlusion prob-
lem: model-based, object-based and depth based.

3.1.1 Model-based Methods. These rely on having a 3D model
of the scene or having a model of the occluding object. With the
model a simple depth test can be performed by aligning real and
virtual objects via tracking. The 3D model can be obtained directly
from existing resources, built with modeling software or recon-
structed using cameras and sensors. Reconstruction algorithms
[A. Newcombe et al. 2011; Izadi et al. 2011; Whelan et al. 2015] can
reconstruct a semi dense and accurate model but the boundaries
are still often noisy. According to Shah et al. [Shah et al. 2012]
model-based methods are appropriate when the complexity of the
scene is low and when it is easy to obtain 3D models of the objects
involved.

Overall it can be concluded that this method only works in simple
scenes and the quality of the results when using these methods is
heavily influenced by the quality of the models or reconstructions
as well as the quality of the tracking. Furthermore, this category of
methods is usually not able to deal with with dynamic occlusions
or deformable objects.

3.1.2 Object-based Methods. These commonly use a contour of
the occluding object to handle occlusions. In Lepetit’s et al. work
[Lepetit and marie odile 2000] the user specifies the occluding ob-
jects in key-views and then occlusions in intermediate views can
be generated automatically. Tian et al. [Yuan et al. 2010] proposes
a real-time approach which is divided into three steps: selection,
tracking and occlusion handling. First the user specifies the oc-
cluding object by using an interactive segmentation method. The
contour of the object is then tracked in real-time in subsequent
frames. In the occlusion handling step the virtual object is drawn
on top of the real world image and then all the pixels of the tracked
object are redrawn on top of the virtual object.

The main problem of this approach is that it only works if the
relative position between real and virtual objects does not change,
i.e., if we assume that one virtual object is in front of a real object
we cannot move the real object behind that virtual object or the
illusion will be broken.

3.1.3 Depth-based Methods. These can handle occlusions for un-
known objects without any user input. Nothing about shape, size
or position needs to be known previously for depth-based methods
to work. They rely on external sensors to capture depth informa-
tion of the real world such as depth sensors [Du et al. 2016; Leal
et al. 2013] or stereo cameras [Schmidt et al. 2002] and then use the
depth information to compute occlusion. Although this approach
might seem more versatile and powerful there are some drawbacks:
depth sensors still produce noisy depth maps and sometimes are
not able to capture relevant information. Sensors do not deal well
with shadows, are limited by their effective range and cannot per-
ceive reflective or transparent materials. Additionally, camera depth
maps are low resolution and not aligned with the its color image.

Dynamic Occlusion Handling for Real-Time AR Applications VRCAI ’19, November 14–16, 2019, Brisbane, QLD, Australia

(a) Scene (b) Sensor Depth (c) Coarse Trimap (d) Unknown Labels (e) Final Trimap

(f) Scene (g) Sensor Depth (h) Coarse Trimap (i) Unknown Labels (j) Final Trimap

Figure 1: Adaptive TrimapGeneration. d) Unknown labels on top of color boundaries, e) Unknown labels on top of final trimap

The main problem of this approach is dealing with the problems
associated with depth sensors but it is possible to overcome these
issues by preprocessing the incoming depth data using different
techniques, which we discuss in the next section.

3.2 Improving and Enhancing Depth Maps
To solve the issues of the depth sensors researchers have come
up with ways to improve the quality of the depth data by using
software. For example, Leal-Meléndrez et al. [Leal et al. 2013] uses
an inpainting algorithm to fill holes in the depth maps by expanding
known regions into unknown regions. Schmidt et al. [Schmidt et al.
2002], proposed a method to obtain good quality dense disparity
maps (depth map) from stereo images with focus on sharp edges.
Du et al. [Du et al. 2016], improves depth maps with sharp edges
aligned to the edges of the color map. They extract edges from the
depth map and from the color map and then use an edge snapping
technique to improve the consistency between both. This technique
produces good results when the occluding object has well defined
color edges which makes it easier to separate the object from the
background but has trouble when this condition is not present.
Another downside is that this method is very time consuming in
higher resolutions.

Since depth maps are essential to many applications in computer
vision researchers have come upwith various algorithms to improve
the quality of the maps. Edge-aware filters are useful for occlusion
handling because they smooth images but preserve the edges. Some
examples include bilateral filter [Tomasi and Manduchi 1998], joint
bilateral filter [Kopf et al. 2007] and guided filter [He et al. 2013].
Schmeing and Jiang [Schmeing and Jiang 2014] proposed a method
to aligns depth- with color- edges based on color segmentation.

3.3 Alpha Matting and Trimap Generation
Matting is a known and well-studied technique that is used in
many image and video editing applications. For occlusion handling
the most relevant methods are the ones where the background is
arbitrary and unknown. Alpha matting can be computed using
color information, depth information or both. Color-based methods
that are relevant for occlusion handling can be divided into two
main types: sampling-based and propagation-based.

3.3.1 Sampling-based methods. These [Berman et al. 2000a,b; Ru-
zon and Tomasi 2000] assume that the true foreground and back-
ground colors of an unknown pixel can be estimated from known
foreground and background samples. Unknown alpha values are
then calculated by solving the inverse composition equation. Ac-
cording to Wang and Cohen [Wang and Cohen 2007a] the results
are dependent on the quality of the trimap and selected samples.
Sampling-basedmethods produce good results when the foreground
and background have distinct color distributions which simplifies
the process of selecting sample colors. Propagation-based methods
[Levin et al. 2008; Sun et al. 2004] assume that foreground and
background colors are locally smooth and solve the problem by
propagating know alpha values into unknown regions. According
to Wang and Cohen [Wang and Cohen 2007b] these methods pro-
duce good results for simple background and foreground patterns,
but the quality quickly degrades in more complex environments.

Several techniques combine the two approaches to achieve high
quality results. These techniques collect pairs of foreground and
background samples and estimate the alpha values in a global op-
timization problem, by selecting the best pairs available. This ap-
proach can be divided into two problems: 1) selection of suitable
samples and 2) definition of a good cost function to use in the
optimization process. Wang and Cohen [Wang and Cohen 2007b]
generate the samples from the nearest boundary pixels and Johnson

VRCAI ’19, November 14–16, 2019, Brisbane, QLD, Australia Jorge, et al.

et al. [Johnson et al. 2016] generate the samples from the closest su-
per pixels. After the selection of sample pairs an objective function
is used to calculate the best pair and generate the corresponding
alpha value [S. L. Gastal and Oliveira 2010; Wang and Cohen 2007b].

3.3.2 Depth-based Methods. Depth-based methods use depth in-
formation to solve the problem of generating high quality trimaps
[Lu and Li 2012; Wang et al. 2007]. These start by dividing the
foreground and background into a binary map. Then they discover
unknown regions by applying erosion and dilatation to the fore-
ground. The separation between foreground and background can
be found via a user-defined plane [Wang et al. 2007] or by a seg-
mentation algorithm like k-means [Zhu et al. 2009]. Cho et al. [Cho
et al. 2011] proposed an adaptive dilation according to the fuzziness
of the foreground object. This approach allows fuzzy objects to be
covered by larger unknown regions than objects with sharp edges.

3.3.3 Color and depth-based Methods. These combine the infor-
mation of color and depth to achieve the best quality. Hebborn et al.
[Hebborn et al. 2017] generate an adaptive trimap automatically us-
ing depth and color information. They start by generating a coarse
trimap using depth information. Then the pixels on the unknown
regions are labeled according to their position relative to the edges
of the color image. Finally using the information computed previ-
ously an adaptive dilation is applied to extend unknown regions in
a way that that both depth and color boundaries are covered while
keeping the unknown regions as small as possible. After the refined
trimap is found, known foreground and background regions of the
color image are propagated toward the unknown regions. Finally,
the alpha matte is estimated through a sample-based method where
local samples are collected from the foreground and background
and the best samples are selected using an objective function.

4 OUR APPROACH
Our technique takes advantage of color and depth information
provided by a sensor such as the Kinect. The color and depth in-
formation are then processed in several steps to achieve the final
alpha matte and combine the virtual objects with the real world
scene. The main steps in this process are as follows:

Virtual Scene Rendering. Renders the virtual scene into tex-
tures. The color is rendered into a texture and the depth
information is rendered to a second texture.

Depth Data Smoothing. Filters the depth information provided
by the sensor to remove noise and improve the quality of
the depth map.

Coarse Trimap Generation. Uses the depth information pro-
vided by the sensor and the depth information of the virtual
scene to generate an initial trimap.

Adaptive Trimap Dilation. Uses color information captured by
the sensor to further refine the initial trimap. During this
stage unknown areas are dilated to cover possible fuzzy areas
or areas where the depth information is inaccurate or invalid.

Foreground and Background Color Propagation Propagates
the colors of the known foreground and background regions
into the unknowns areas of the trimap.

Alpha Estimation. Uses the colors of the expanded foreground
and background images to find a good alpha value for each
pixel of the unknown areas.

Alpha Matte Smoothing. Filters the generated alpha matte to
reduce visual noise and small imperfections.

Compositing. Combines the color images of the virtual scene
and real world using the alpha matte previously generated.

4.1 Depth Data Smoothing
Due to the fact that the depth data captured by sensors is typically
noisy we first try to remove as much noise as possible using a 5 by
5 median filter. This filter improves the quality of the depth map
by smoothing the edges of the objects in the scene.

4.2 Coarse Trimap Generation
In this step we split the scene into foreground, background and
unknown regions. The trimap represents the three possible types of
regions by coloring each regionwith a diferent color: the foreground
is painted with white, the background with black and the unknown
regions with grey. A fourth color, red, is used to paint areas which
are not covered by the virtual objects and, as such, there is no need
to find whether the virtual objects are occluded.

First we generate an initial trimap where the known foreground
and background regions are found by applying a simple depth
test between the scene depth data and the virtual depth data. If
the sensor’s depth data is invalid, which occurs due to shadowing
effects, the region is marked as background.

Finally, to find the unknown regions, which are neither in the
background or in the foreground, we apply a 3 by 3 sobel filter
to the initial trimap. This filter detects the transitions between
the foreground and the background regions which are marked
as unknown. The sobel filter also provides us with information
regarding the direction of the transitions which will be important
in the next steps.

4.3 Adaptive Trimap Dilation
If we only took the depth information into account then we would
obtain wrong alpha estimations because sometimes we would be
taking samples from the foreground as if they were samples from
the background and vice versa.

To solve this issue We need to expand the unknown regions in
such a way that they cover not only the transitions in the depth
map but also transitions in the color image. Furthermore, we want
to keep these regions as small as possible otherwise they could
be expanded until enough information was lost and make alpha
estimation impossible.

To overcome these problems we take the boundaries of the depth
map as an initial estimation and then expand the unknown regions
towards the color boundaries. To achieve this goal we must first
find the relative positions between the depth map boundaries and
the color map boundaries so we can expand the unknown regions
in the right direction.

4.4 Labeling Unknown Regions
This step labels all pixels in the unknown regions according to their
position in relation to the boundaries of the color map.

Dynamic Occlusion Handling for Real-Time AR Applications VRCAI ’19, November 14–16, 2019, Brisbane, QLD, Australia

After we have found the boundaries of the color image we can
categorize all pixels of the unknown regions into three categories:
front-half space, back-half space and no edge. An unknown pixel i is
labeled with front-half space if i lies in the front-half space of an
edge in the color image. Conversely, if the unknown pixel i lies in
the back-half space of an edge in the color image it is labeled as
back-half space. If there are no edges in the color image around the
unknown pixel i the pixel i is labeled as no edge.

To determine whether an unknown pixel is in the back-space
or front-space of an edge or if it has no nearby edges in the color
image we must look for pixels that belong to the boundaries of the
color image in a window around the unknown pixel. If the number
of color edge pixels is bellow a certain threshold then the unknown
pixel is marked as no edge. If there are enough color edge pixels
around the unknown pixel then we can find if the unknown pixel
is in front or behind the color edge pixels by computing the scalar
product between the direction of the unknown pixel gradient and
the direction from the unknown pixel to the color edge pixel as
explained in Figure 2. This procedure and its results are explained
in detail in [Silva 2018].

4.5 Adaptive Dilation
In order to expand the unknown regions we took inspiration from
Chen et al. [Chen et al. 2012]. We expand the unknown regions
starting in the pixels marked previously as unknown and propagat-
ing them until we reach the boundaries of the color image. We use
the information that was computed in the previous step in order to
find the direction of expansion.

Furthermore when an initial unknown pixel is marked as no
edge we expand the unknown region in all directions around that
pixel. The amount of dilation applied in this case depends on the
number of no edge pixels found in that region of the trimap. This
mechanism allows us to cover areas where the information of the
color is fuzzy, for example when fur or hair are present.

4.6 Foreground and Background Propagation
To get a good alpha estimation we need to find good samples of the
known foreground and background colors. We chose to propagate
the known values into the unknown areas. This step allows us to
later use the propagated colors to realize a universal search in a
window around each unknown pixel.

Figure 2: Labeling Process. (a) unknown regions (blue) over-
laid with boundaries in the color image (red), (b) the un-
known pixel lies in the front-half space of the color bound-
aries, (c) the unknown pixel lies in the back-half space of the
color boundary.

We took inspiration from Hebborn et al. [Hebborn et al. 2017]
to solve this problem. The idea of the technique is to successively
blur the known values into the unknown regions and write back
only the blurred values where the image was empty before. By
repeating this process several times we manage to diffuse the color
of the known boundaries into the unknown regions. This technique
is similar to the known hole filling method proposed by Davis et
al. [Davis et al. 2002]. To increase the speed of the process the
blurring occurs in lower resolution images as seen in pyramid-
based filtering algorithms [J Burt 1981; Ogden et al. 1985]. These
approaches build an image pyramid by downscaling the original
image down to a specified level. The required operations are then
performed in the lowest resolution image, which is much smaller
than the original image. And finally the processed low resolution
image is upscaled back to the original size.

The process is applied to both the foreground and background
known values. So, to simplify, we will only explain how it works
for the foreground. Figure 1 illustrates the steps of a single iteration
of the image diffusion. The more times we repeat this algorithm
the smoother the propagation colors become.

The first step of the diffusion is to copy the foreground image
into a new image S (line 1). Then we must initialize all the alpha
values of the image S (lines 2-8). We then build the image pyramid
and initialize the first level with all the known foreground colors
and set their α channel to 1 (line 9). We create the lower resolution
levels of the image pyramid by sequentially down-sampling the
previous level using a simple linear filter. In the end we clear all the
levels except the lowest one. Next we start from the lowest level
of the pyramid and start to rebuild the pyramid by up-sampling
the lowest level using a quadratic B-spline interpolation. It is also
important to point out that the factors of the quadratic interpolation
are weighted by the α values so that only known values are taken
into account. We repeat this process until we reach the original
resolution. This allows for a fast smoothing of the original image
and for the known values to propagate past the original boundaries
of the starting image. To finish off we must combine the original
image with the new blurred one (lines 11-17). The goal is to copy
only new color values where previously there were none. To achieve
a smooth transition between diffusion steps a constant n is used to
control how the new and previous colors are combined.

The propagation extent depends both on the height l of the image
pyramid and on diffusion steps i. If the pyramid height increases
then the propagated area grows. Thus, the more diffusion steps
performed, the smoother the propagated colors become. Figure 3
shows the final result of the propagation algorithm according to
pyramid height l and diffusion steps i.

For each pixel created during the image propagation algorithm
we save the iteration i where that pixel was created. We later use
this information to measure how far that color is from the original
pixels in the alpha estimation process.

4.7 Alpha Estimation
To estimate the alpha matte we take pairs of samples from the
expanded foreground and background images and try to find the
pair of values that best represent the color of the image when
linearly combined. The best pair is defined by an objective function

VRCAI ’19, November 14–16, 2019, Brisbane, QLD, Australia Jorge, et al.

Algorithm 1: Single step of the diffusion algorithm
copy input image F with 4 channels to image S;
for each pixel ps of the image S do

if psa > 0 then
psa ← 1;

else
psa ← 0;

end
end if;

end
end for;
build image pyramid of S with l levels;
go top-down the pyramid to smooth S;
for each pixel pf of the image F do

if psa > 0 then

wi−1 ←
p fa
n ▶ calculate normalized weight;

p
f
rдb ← wi−1p

f
rдb + (1 −wi−1)p

s
rдb ;

p
f
a ←min(p

f
a + 1,n) ▶ increase and clamp alpha;

end
end if;

end
end for;

that considers both a color cost and a propagation cost. The color
cost is the difference between the linear combination of the two
colors with a certain α value and the real color captured by the
camera. The propagation cost takes into account the iteration i
when the colors were generated in the expanded images. We can
estimate the α value of a given sample pair (Fk ,Bl) via Eq. 2, where
Ip is the color of the unknown pixel in the image.

(a) Foreground: l = 2 and
i = 20

(b) Foreground: l = 4 and
i = 5

(c) Foreground: l = 6 and
i = 4

(d) Background: l = 2 and
i = 20

(e) Background: l = 4 and
i = 5

(f) Background: l = 6 and
i = 4

Figure 3: Propagation of Foreground and Background. Re-
sults for different pyramid levels l and diffusion steps i

αp (Fk ,Bl , Ip) =
(Ip − Bl)(Fk − Bl)

| |Fk − Bl | |
2 (2)

4.7.1 Objective Function. When we want to estimate the alpha
value of a certain unknown pixel pi , j we try to minimize the objec-
tive function for all the possible pairs of foreground and background
colors in a window ofn×n pixels aroundp ({Fi−n, j−n, Fi−n+1, j−n+1,
..., Fi+n, j+n }, {Bi−n, j−n,Bi−n+1, j−n+1, ...,Bi+n, j+n }). For each of
those pairs (Fk ,Bl) we solve the objective function:

(Fk ,Bl) = wCcol (Fk ,Bl , Ip) +Cpro (Fk ,Bl) (3)
wherew is the weight of the color cost, Ccol (Fk ,Bl , Ip) is the color
cost (Eq. 4) and Cpro (Fk ,Bl) is the propagation cost (Eq. 5).

After we find the best pair we can estimate the α value using
Eq. 2. The alpha value of the known values is set to 1 where the
foreground is known and to 0 where the background is known.

4.7.2 Color Cost Function. Measures howwell a sample pair is able
to represent value Ip of the image by a linear combination of those
pixels. Thus, if a pair of foreground and background colors can
approximate the intensity Ip , the associated cost should be small:

Ccol (Fk ,Bl , Ip) = | |Ip − (αFk + (1 − α)Bl)| | (4)
where α is the estimated value for the pair Fk ,Bl using Eq. 2.

4.7.3 Propagation Cost Function. To reduce the impact of wrongly
propagated colors we record when in the process of the image
propagation a specific pixel color was created. That way, colors
created during the first steps should have a low propagation cost,
as defined by Eq. 5, since their values are closer to known RGB
values in the image.

Cpro (Fk ,Bl) =
d(Fk) + d(Bl)

2dm
(5)

In Eq. 5 d(p) returns the number of the iteration di ∈ [0,dm−1], in
which the color p was created during image propagation, where
dm is the total iterations of the image propagation algorithm.

4.8 Alpha Matte Smoothing
After we compute alpha values for all pixels we smooth them by
applying a 5 × 5 low pass filter to the final alpha matte, to both
remove unwanted noise and improve its quality.

5 IMPLEMENTATION AND PERFORMANCE
To implement our approach we opted to use C++, OpenGL 4.3 and
the OpenGL Toolkit (GLUT). All the computational steps take place
in the GPU and are programmed in OpenGL Shader Language. The
search for good sample pairs in the alpha estimation step is also
done in the GPU to be as quick as possible. We perform each com-
putational step as a rendering pass mapping the result into a texture
using frame buffers. That texture is used in the next computational
steps when needed. We used the Kinect V2 sensor to capture color
and depth information. The performance measurements were ob-
tained for a resolution of 1920 by 1080 in both color and depth data.
The propagation algorithm ran in a window of 1024 by 1024 around
the area of interest (the center of the virtual object).

Dynamic Occlusion Handling for Real-Time AR Applications VRCAI ’19, November 14–16, 2019, Brisbane, QLD, Australia

Table 1: Performancemeasurements of themain steps of our
method. With 4 pyramid levels l and 6 diffusion steps i.

Number of Unknown Pixels 6617 6978 13973
Trimap Generation (ms) 0.1228 0.1286 0.1333

Propagation (ms) 1.328 1.406 1.368
Alpha Estimation (ms) 0.02433 0.02575 0.03592

Total (ms) 1.576 1.541 1.518

5.1 Performance Evaluation
The computer used to perform the measurements was equipped
with an equipped with an Intel i7-6700 3.40GHz processor and
an NVIDIA Graphics Card. The measurements obtained are the
average value obtained after executing 1000 cycles of the algorithm.
As seen in Table 1 the number of unknown pixels do not cause
significant changes in the overall performance of the algorithm. As
expected, the amount of unknown pixels affect mainly the perfor-
mance of the alpha estimation step, since this step depends directly
on the amount of unknown pixels. Anyways, it can be seen that
the most computational intensive step is the propagation of the
known color values of the foreground and background into the
unknown regions. The propagation step is responsible for almost
90% of the total time. This step, shown in Table 2, increases linearly
with pyramid height l and the diffusion steps i. The algorithm needs
around 1.5 ms for generating each frame which easily beats the
real-time performance benchmark of 30 frames per second. Even
with all the overhead of loading the sensors data into the GPU
and the overhead associated with OpenGL our technique is able to
process 40 to 50 frames per second.

6 RESULTS
To show our approach working we chose three representative sce-
narios: one scenario where the virtual object is simple (a plane) and
the background and foreground colors are substantially different, a
second scenario where we keep the same simple virtual object but
where the foreground and background have similar colors and a
third scenario where we use a more complex virtual object.

To compare results we implemented an occlusion computing
prototype that uses only the depth to compute occlusions with a
simple depth test. We then took the simple raw depth method and
improved it by applying a median filter to the depth map and by
smoothing the resulting alpha matte with a low pass filter. Finally,
we also compare our results with the results from the original alpha
matting algorithm [Hebborn et al. 2017]. The comparison results
can be seen in Figure 4.

7 LIMITATIONS
Our method does not perform very well when the foreground and
background have similar colors. When this scenario occurs we are
not able to extract information about the color boundaries of the
image and so we must rely only on depth data which is, most of
the times, not accurate enough.

Another limitation is dealing with very narrow regions between
objects of the scene. Sometimes it is not possible to accurately
distinguish between foreground and background in these regions.

Table 2: Performance measurements for different pyramid
levels l and diffusion steps i.

Diffusion Steps i Pyramid Levels l Time in ms
2 10 0.8658
2 20 1.093
4 5 0.7029
6 4 0.7678
10 2 0.965
20 2 1.205

This happens because the depth data has not enough resolution
to detect changes in depth values in narrow regions. As the depth
map edge filter fails to detect boundaries in these regions they are
not not marked as unknown and are treated as foreground.

Another problem which sometimes affects the final result is the
flickering that happens in the depth data captured by the sensor we
used. We tried to minimize this problem by smoothing the alpha
matte both spatially and temporally. We were able to improve the
final result by applying a low pass filter to the alpha matte but we
were not able to implement any kind of temporal filtering without
causing a significant performance drop.

8 CONCLUSIONS
In this work we improved the algorithm proposed by Hebborn et al.
[Hebborn et al. 2017] by using different filters to treat depth data
captured by the sensor, by tweaking the adaptive dilation step and
by adding a final post processing step to smooth and improve the
produced alpha matte. These changes make the final result both
more stable and aesthetically pleasing.

9 FUTUREWORK
One possible improvement to the current method is to apply more
advanced optimization techniques in the alpha estimation step.
Currently we use a primitive local search to find the best pairs.
Maybe one could apply artificial intelligence techniques in this step
to come up with a better approach to estimate the alpha matte.
These techniques could even help improve object selection in other
VR/AR contexts [Mendes et al. 2017].

Another possible improvement is to apply temporal stabilization
to the final result using information from the previous frames. We
tried to apply an averaging operation between the current and the
last frames but were not able to get any improvements without
slowing down the final result. Maybe as the graphic cards get faster
this technique could be viable. If not, maybe machine learning
approaches could also be used to reduce the flickering in the depth
information that sometimes bleeds into the final result. Anyways,
we feel like most of the issues affecting this approach could be
improved by simply using more accurate sensors which will likely
be available in the near future, or by learning better filters through
data-driven techniques.

ACKNOWLEDGMENTS
This project was funded by FCT through grants IT-MEDEX PTDC
/EEISII/6038/2014 and UID/CEC/50021/2019.

VRCAI ’19, November 14–16, 2019, Brisbane, QLD, Australia Jorge, et al.

(a) Raw depth (b) Improved (c) Original (d) Ours

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

(i) Raw (j) Improved (k) Original (l) Ours

(m) Result of (i) (n) Result of (j) (o) Result of (k) (p) Result of (l)

(q) Raw (r) Improved (s) Original (t) Ours

(u) Result of (q) (v) Result of (r) (w) Result of (s) (x) Result of (t)

Figure 4: Results of applying the four algorithms. Left column (a,l,q) shows the simple raw depth method, that we improved
by applying a median filter and smoothing the alpha matte via a low pass filter to reduce jagged edges (b,j,r) and yield a more
pleasing result (f,n,v). On the right, we compare our technique with [Hebborn et al. 2017] (cols c, q, s). Although not visible in
the still pictures, our method (d, l, t) produces more stable results (h, p, x). This is better illustrated in the supplemental video
provided.

Dynamic Occlusion Handling for Real-Time AR Applications VRCAI ’19, November 14–16, 2019, Brisbane, QLD, Australia

REFERENCES
P A. Fortin and P Hebert. 2006. Handling Occlusions in Real-time Augmented Reality :

Dealing with Movable Real and Virtual Objects. In Third Canadian Conference on
Computer and Robot Vision (CRV). 54.

Richard A. Newcombe, Steven J. Lovegrove, and Andrew J. Davison. 2011. DTAM:
Dense tracking and mapping in real-time. In IEEE International Conference on
Computer Vision. 2320–2327.

A Berman, A Dadourian, and P Vlahos. 2000a. Method for removing from an image
the background surrounding a selected object. (January 2000).

A Berman, P Vlahos, and A Dadourian. 2000b. Comprehensive method for removing
from an image the background surrounding a selected object. (October 2000).

David Breen, Eric Rose, and Ross T. Whitaker. 1995. Interactive Occlusion and Collision
of Real and Virtual Objects in Augmented Reality. Technical Report. European
Computer-Industry Research Centre.

L. Chen, H. Lin, and S. Li. 2012. Depth image enhancement for Kinect using region
growing and bilateral filter. In Proceedings of the 21st International Conference on
Pattern Recognition (ICPR2012). 3070–3073.

J. Cho, T. Yamasaki, K. Aizawa, and K. H. Lee. 2011. Depth video camera based temporal
alpha matting for natural 3D scene generation. In 2011 3DTV Conference: The True
Vision - Capture, Transmission and Display of 3D Video. 1–4.

J. Davis, S. R. Marschner, M. Garr, and M. Levoy. 2002. Filling holes in complex surfaces
using volumetric diffusion. In Proceedings. First International Symposium on 3D
Data Processing Visualization and Transmission. 428–441. https://doi.org/10.1109/
TDPVT.2002.1024098

C. Du, Y. Chen, M. Ye, and L. Ren. 2016. Edge Snapping-Based Depth Enhancement
for Dynamic Occlusion Handling in Augmented Reality. In 2016 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR). 54–62.

Jan Fischer, Holger Regenbrecht, and Gregory Baratoff. 2003. Detecting dynamic
occlusion in front of static backgrounds for AR scenes. In EGVE ’03 Workshop on
Virtual environments. 153–161.

Kenichi Hayashi, Hirokazu Kato, and Shogo Nishida. 2005. Occlusion detection of real
objects using contour based stereo matching. 180–186.

K. He, J. Sun, and X. Tang. 2013. Guided Image Filtering. IEEE Transactions on Pattern
Analysis and Machine Intelligence 35, 6 (June 2013), 1397–1409.

A. K. Hebborn, N. Höhner, and S. Müller. 2017. Occlusion Matting: Realistic Occlusion
Handling for Augmented Reality Applications. In 2017 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR). 62–71. https://doi.org/10.1109/ISMAR.
2017.23

Bradley Herbert, Barrett Ens, Amali Weerasinghe, Mark Billinghurst, and GrantWigley.
2018. Design considerations for combining augmented reality with intelligent tutors.
Computers & Graphics 77 (2018), 166 – 182. https://doi.org/10.1016/j.cag.2018.09.017

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard A. Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew J. Davison,
and Andrew Fitzgibbon. 2011. KinectFusion: Real-time 3D reconstruction and
interaction using a moving depth camera. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology (UIST). 559–568.

Peter J Burt. 1981. Fast Filter Transforms for Image Processing. Computer Graphics
and Image Processing 16 (May 1981), 20–51.

Jubin Johnson, Ehsan Shahrian, Hisham Cholakkal, and Deepu Rajan. 2016. Sparse
Coding for Alpha Matting. In IEEE Transactions on Image Processing, Vol. 25. 1.

Johannes Kopf, Michael Cohen, Dani Lischinski, and Matt Uyttendaele. 2007. Joint
bilateral upsampling. ACM Transactions on Graphics (Proceedings of SIGGRAPH
2007) 26 (July 2007), 96.

Adrian Leal, Leopoldo Altamirano Robles, and Jesus Gonzalez. 2013. Occlusion Han-
dling in Video-Based Augmented Reality Using the Kinect Sensor for Indoor Reg-
istration. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications. 447–454.

Vincent Lepetit and Berger Marie-Odile. 2000. A Semi-Automatic Method for Resolving
Occlusion in Augmented Reality. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), Vol. 2. 2225–2230.

Vincent Lepetit and Berger marie odile. 2000. A Semi-Automatic Method for Resolving
Occlusion in Augmented Reality. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR). 2225–2230.

Anat Levin, Dani Lischinski, and Yair Weiss. 2008. A Closed-Form Solution to Natural
Image Matting. In IEEE transactions on pattern analysis and machine intelligence,
Vol. 30. 228–42.

Daniel Simões Lopes and Joaquim A. Jorge. 2019. Extending medical inter-
faces towards virtual reality and augmented reality. Annals of Medicine
51, sup1 (2019), 29–29. https://doi.org/10.1080/07853890.2018.1560068
arXiv:https://doi.org/10.1080/07853890.2018.1560068

Ting Lu and Shutao Li. 2012. Image matting with color and depth information. In
International Conference on Pattern Recognition. 3787–3790.

Matthias M. Wloka and Brian G. Anderson. 1995. Resolving Occlusion in Augmented
Reality. In Symposium on Interactive 3D graphics (I3D). 5–12.

Daniel Mendes, Daniel Medeiros, Maurício Sousa, Eduardo Cordeiro, Alfredo Ferreira,
and Joaquim A. Jorge. 2017. Design and evaluation of a novel out-of-reach selection

technique for VR using iterative refinement. Computers & Graphics 67 (2017), 95 –
102. https://doi.org/10.1016/j.cag.2017.06.003

Joan Ogden, Edward Adelson, James Bergen, and Peter J. Burt. 1985. Pyramid-based
Computer Graphics. RCA engineer 30 (September 1985), 4–15.

Bernhard Preim and Patrick Saalfeld. 2018. A survey of virtual human anatomy
education systems. Computers & Graphics 71 (2018), 132 – 153. https://doi.org/10.
1016/j.cag.2018.01.005

M. A. Ruzon and C. Tomasi. 2000. Alpha estimation in natural images. In Proceedings
IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000, Vol. 1.
18–25.

Eduardo S. L. Gastal and Manuel Oliveira. 2010. Shared Sampling for Real-Time Alpha
Matting. In Eurographics 2010, Vol. 29. 575–584.

Michael Schmeing and Xiaoyi Jiang. 2014. Edge-aware depth image filtering using
color segmentation. Pattern Recognition Letters 50 (December 2014), 63–71.

J. Schmidt, H. Niemann, and S. Vogt. 2002. Dense disparity maps in real-time with
an application to augmented reality. In Sixth IEEE Workshop on Applications of
Computer Vision, 2002. (WACV 2002). Proceedings. 225–230.

Susanne Schmidt, Gerd Bruder, and Frank Steinicke. 2019. Effects of virtual agent and
object representation on experiencing exhibited artifacts. Computers & Graphics 83
(2019), 1 – 10. https://doi.org/10.1016/j.cag.2019.06.002

Paul D. Schmirler, Thong T. Nguyen, Alex L. Nicoll, and David Vasko. 2018. Virtual re-
ality and augmented reality for industrial automation. PATENT US20180131907A1.
https://patents.google.com/patent/US20180131907A1/en

M. M. Shah, H. Arshad, and R. Sulaiman. 2012. Occlusion in augmented reality. In 2012
8th International Conference on Information Science and Digital Content Technology
(ICIDT2012), Vol. 2. 372–378.

Ricardo Silva. 2018. Dynamic Occlusion Handling for Real-Time AR Applications. Mas-
ter’s thesis. Instituto Superior Técnico da Universidade de Lisboa, Avenida Rovisco
Pais s/n 1049-001, Lisboa, Portugal.

Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung Shum. 2004. Poisson matting.
In ACM SIGGRAPH, Vol. 23. 315–321.

C. Tomasi and R. Manduchi. 1998. Bilateral filtering for gray and color images. In Sixth
International Conference on Computer Vision (IEEE Cat. No.98CH36271). 839–846.

Jue Wang and Michael Cohen. 2007a. Image and Video Matting: A Survey. Foundations
and Trends in Computer Graphics and Vision 3 (January 2007), 97–175.

J. Wang and M. F. Cohen. 2007b. Optimized Color Sampling for Robust Matting. In
2007 IEEE Conference on Computer Vision and Pattern Recognition. 1–8.

O. Wang, J. Finger, Q. Yang, J. Davis, and R. Yang. 2007. Automatic Natural Video Mat-
ting with Depth. In 15th Pacific Conference on Computer Graphics and Applications.
469–472.

Thomas Whelan, Stefan Leutenegger, Renato Salas Moreno, Ben Glocker, and Andrew
Davison. 2015. ElasticFusion: Dense SLAMWithout A Pose Graph. (July 2015).

Tian Yuan, Guan Tao, and Wang Cheng. 2010. Real-Time Occlusion Handling in
Augmented Reality Based on an Object Tracking Approach. In Sensors, Vol. 10.

J. Zhu, Miao Liao, R. Yang, and Zhigeng Pan. 2009. Joint depth and alpha matte
optimization via fusion of stereo and time-of-flight sensor. In 2009 IEEE Conference
on Computer Vision and Pattern Recognition. 453–460.

Jiejie Zhu, Zhigeng Pan, Chao Sun, and Wenzhi Chen. 2010. Handling occlusions in
video-based augmented reality using depth information. Journal of Visualization
and Computer Animation 21 (September 2010), 509–521.

Ezequiel R. Zorzal, Maurício Sousa, Daniel Mendes, Rafael Kuffner dos Anjos, Daniel
Medeiros, Soraia Figueiredo Paulo, Pedro Rodrigues, José João Mendes, Vincent Del-
mas, Jean-Francois Uhl, José Mogorrón, Joaquim Armando Jorge, and Daniel Simões
Lopes. 2019. Anatomy studio: A tool for virtual dissection through augmented 3D
reconstruction. Computers & Graphics (2019). https://doi.org/10.1016/j.cag.2019.
09.006

https://doi.org/10.1109/TDPVT.2002.1024098
https://doi.org/10.1109/TDPVT.2002.1024098
https://doi.org/10.1109/ISMAR.2017.23
https://doi.org/10.1109/ISMAR.2017.23
https://doi.org/10.1016/j.cag.2018.09.017
https://doi.org/10.1080/07853890.2018.1560068
http://arxiv.org/abs/https://doi.org/10.1080/07853890.2018.1560068
https://doi.org/10.1016/j.cag.2017.06.003
https://doi.org/10.1016/j.cag.2018.01.005
https://doi.org/10.1016/j.cag.2018.01.005
https://doi.org/10.1016/j.cag.2019.06.002
https://patents.google.com/patent/US20180131907A1/en
https://doi.org/10.1016/j.cag.2019.09.006
https://doi.org/10.1016/j.cag.2019.09.006

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Related Work
	3.1 Occlusion Handling
	3.2 Improving and Enhancing Depth Maps
	3.3 Alpha Matting and Trimap Generation

	4 Our Approach
	4.1 Depth Data Smoothing
	4.2 Coarse Trimap Generation
	4.3 Adaptive Trimap Dilation
	4.4 Labeling Unknown Regions
	4.5 Adaptive Dilation
	4.6 Foreground and Background Propagation
	4.7 Alpha Estimation
	4.8 Alpha Matte Smoothing

	5 Implementation and Performance
	5.1 Performance Evaluation

	6 Results
	7 Limitations
	8 Conclusions
	9 Future Work
	Acknowledgments
	References

